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Homogeneous Boolean Algebras with

Very Nonsymmetric Subalgebras

SABINE KOPPELBERG and J. DONALD MONK

We prove the following theorems.

Theorem 1 For every Boolean algebra A there are extensions C 2 B 2 A
such that B and C are homogeneous, every endomorphism or automorphism
of A extends to an endomorphism or automorphism of B, and no nontrίvial
one-one endomorphism of B extends to an endomorphism of C.

Theorem 2 Assume (0). There is an ωx-Souslin tree T such that the regular
open algebra B of T is homogeneous and has a complete subalgebra A onto
which no nontrivial automorphism of B restricts.

These theorems were motivated by the following question raised by
Stepanek: Does there exist a complete homogeneous Boolean algebra B with
a complete homogeneous subalgebra A such that no nontrivial automorphism
of A extends to BΊ Here a Boolean algebra B is called homogeneous if every
principal ideal B t b = \x e B \x < b\ for b Φ 0 is isomorphic to B\ because of
B^B\bXB\-b,B\b is also called a factor of B. B is said to be rigid if it
has no nontrivial automorphism.

Stepanek's question arose from the following facts. Every Boolean algebra
A can be embedded into a homogeneous complete algebra B such that every
automorphism of A extends to B (see [4] and [5]). Every A can be embedded
into a complete rigid B—of course, no nontrivial automorphism of A extends
to B (see [7]). Every A can be embedded into a complete B without homo-
geneous or rigid factors such that either every or no nontrivial automorphism
oϊA extends to B (see [8] and [9]).

We assume acquaintance with [6] for the proof of Theorem 1 and with
[ l ] o r [3] for Theorem 2.
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