Sums of Finitely Many Ordinals of Various Kinds

MARTIN M. ZUCKERMAN

Abstract The ordinals $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are said to be pairwise-noncommutative if for all $i, j=1,2, \ldots, n$, if $i \neq j$, then $\alpha_{i}+\alpha_{j} \neq \alpha_{j}+\alpha_{i}$. For positive integers n and k, let Σ_{n} be the symmetric group on n letters and let E_{n} (respectively L_{n}, S_{n}, T_{n}, or P_{n}) be the set of all k for which there exist n (not necessarily distinct) nonzero ordinals (respectively, limit ordinals, successor ordinals, infinite successor ordinals, or pairwise-noncommutative ordinals) such that $\sum_{i=1}^{n} \alpha_{\phi(i)}$ takes on exactly k values as ϕ ranges over Σ_{n}. Then for all $n \geq 1, E_{n}=L_{n}=$ $S_{n}=T_{n} ; \min P_{n}=n$, and $\max P_{n}=\max E_{n}$. Furthermore, $P_{1}=E_{1}, P_{2}=E_{2}$, $P_{3}=E_{3}-\{1,2\}$, and $P_{4}=E_{4}-\{1,2,3,11\}$.

1 Introduction Addition of ordinal numbers depends upon the order of the summands. For each positive integer n, the maximum number, m_{n}, of distinct values that can be assumed by a sum of n nonzero ordinal numbers in all n ! permutations of the summands has been calculated by Erdös [1] and Wakulicz [3] and [4]. The first few values of m_{n} are as follows: $m_{1}=1, m_{2}=2, m_{3}=5$, $m_{4}=13, m_{5}=33, m_{6}=81, m_{7}=193, m_{8}=449$; moreover, it is known that $\lim _{n \rightarrow \infty} \frac{m_{n}}{n!}=0$.

Let n and k be positive integers. Let Σ_{n} be the symmetric group on n letters. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be any n (not necessarily distinct) nonzero ordinals. We will say that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ yield k sums if $\left\{\sum_{i=1}^{n} \alpha_{\phi(i)}: \phi \in \Sigma_{n}\right\}$ is a k-element set. Let E_{n} be the set of all integers k for which there exist n (not necessarily distinct) nonzero ordinals that yield k sums. It is known that $E_{n}=\{1,2,3$, $\left.\ldots, m_{n}\right\}$ for $n=1,2,3,4,6,7$, and 8 ([2], [5], and [6]), that $E_{5}=\{1,2,3, \ldots$, $29\} \cup\{31,32,33\}([3])$, and that E_{n} is properly included in $\left\{1,2,3, \ldots, m_{n}\right\}$ for all $n \geq 9$ ([7]).

For every ordinal number $\alpha>0$, let
(1) $\alpha=\omega^{\lambda_{1}} a_{1}+\omega^{\lambda_{2}} a_{2}+\ldots+\omega^{\lambda_{r}} a_{r}$

