Notre Dame Journal of Formal Logic Volume 32, Number 2, Spring 1991

Connection Structures

LOREDANA BIACINO and GIANGIACOMO GERLA

Abstract B. L. Clarke, following a proposal of A. N. Whitehead, presents an axiomatized calculus of individuals based on a primitive predicate "x is connected with y". In this article we show that a proper subset of Clarke's system of axioms characterizes the complete orthocomplemented lattices, while the whole of Clarke's system characterizes the complete atomless Boolean algebras.

1 Introduction In [2] and [3] Clarke presents an axiomatized calculus of individuals based on a primitive predicate "x is connected with y". Such a calculus represents a revised version of the proposal made by Whitehead in *Process* and *Reality* and is similar to the calculus proposed by Leonard and Goodman in [5].

In this article we show that a proper subset of Clarke's system of axioms characterizes the complete orthocomplemented lattices, while the whole of Clarke's system characterizes the complete atomless Boolean algebras.

2 Connection structures Let R be a nonempty set and C a binary relation on R, set $C(x) = \{y \in R/xCy\}$ and suppose the following axioms are true of every $x, y \in R$:

A1 xCx;A2 $xCy \Rightarrow yCx;$ A3 $C(x) = C(y) \Rightarrow x = y.$

We call regions the elements of R and, if $x, y \in R$ and xCy, we say that x is connected with y. If X is a nonempty subset of R, we say that x is the fusion of X just in case for every $y \in R$, xCy iff for some $z \in X$, zCy; in other words, x is the fusion of x provided that

(1) $C(x) = \bigcup \{ C(z)/z \in X \}.$

The fusion of the nonempty subsets of R is assured by the following axiom.

Received August 5, 1988; revised December 15, 1988

242