Notre Dame Journal of Formal Logic Volume 33, Number 4, Fall 1992

On Potential Embedding and Versions of Martin's Axiom

SAKAÉ FUCHINO

Abstract We give a characterization of versions of Martin's axiom and some other related axioms by means of potential embedding of structures.

1 Introduction Let A and B be structures. For a condition \mathcal{E} on p.o.-sets (e.g., ccc, proper, $<\kappa$ -closed, etc.) let us say that A is \mathcal{E} -potentially embeddable into B if there exists a p.o.-set P with the property \mathcal{E} such that \Vdash_P "A is embeddable into B". Similarly we shall say that A and B are \mathcal{E} -potentially isomorphic if there exists a p.o.-set P with the property \mathcal{E} such that \Vdash_P "A \cong B".

The notion of $(\langle \kappa, \infty \rangle)$ -distributive-potentially isomorphism and $\langle \kappa$ -closed-potentially isomorphism have been studied in Nadel and Stavi [7]. In Fuchino, Koppelberg, and Takahashi [4] a characterization of $(\langle \kappa, \infty \rangle)$ -distributive-potentially isomorphism to a free Boolean algebra is given under certain set theoretic assumptions on κ .

In this note we shall consider the question if \mathcal{E} -potential embedding (\mathcal{E} -potential isomorphism) implies the real embedding (isomorphism).

The following examples suggest that this question is by no means trivial for some instances of A and B even when we consider the ccc as the condition \mathcal{E} . Example 1.1c is due to S. Kamo.

Example 1.1

(a) Let A be the subalgebra of the Boolean algebra $\varphi(\omega_1)$ consisting of finite and co-finite subsets of ω_1 . Assume that there exists a ccc Boolean algebra B which is not productively ccc. Let C be a ccc Boolean algebra such that $B \oplus C$ does not satisfy the ccc. By the ccc of B, A is not embeddable in B. But, since \Vdash_{C^+} "B does not satisfy the ccc", we obtain the result that \Vdash_{C^+} "A is embeddable into B".

This situation can also be coded in structures in a language with only a binary relation symbol: Let B and C be as above. Let D and E be the structures defined by

Received August 1, 1991; Revised September 6, 1991