COMMUTATIVITY OF COONS AND TENSOR PRODUCT OPERATORS

GERALD FARIN

ABSTRACT. We show under what conditions Coons type surface approximation operators and tensor product approximation commute. An application is given for Bézier surfaces.

Definitions. We first define a *Coons patch*: Consider a surface patch $\mathbf{s}(u,v)$, which is a continuous map of the unit square into \mathbf{R}^3 . We can define its (bilinearly blended) Coons approximation by

(1)
$$C\mathbf{s}(u,v) = (1-u)\mathbf{s}(0,v) + u\mathbf{s}(1,v) + (1-v)\mathbf{s}(u,0) + v\mathbf{s}(u,1) - (1-u,u)\begin{pmatrix} \mathbf{s}(0,0), \mathbf{s}(0,1) \\ \mathbf{s}(1,0), \mathbf{s}(1,1) \end{pmatrix}\begin{pmatrix} 1-v \\ v \end{pmatrix}.$$

This Coons patch interpolates to all four boundary curves of s; in fact, it only depends on data from the boundary curves. For more details, see [1 or 6].

Let us next define a tensor product surface: Let $\mathbf{x}(t)$ be a curve, i.e., a continuous map of the unit interval into \mathbf{R}^3 . We can define an approximation to it by

(2)
$$A\mathbf{x}(t) = \sum_{i=0}^{m} \mathbf{x}_i A_i(t),$$

where $\mathbf{x}_i = \mathbf{x}(t_i)$ for $0 = t_0 \leq t_1, \ldots, \leq t_m = 1$. The $A_i(t)$ are univariate functions; they determine the nature of the approximation scheme. A second such scheme might be of the form

$$B\mathbf{x}(t) = \sum_{j=0}^{n} \mathbf{x}_{j} B_{j}(t).$$

Copyright ©1992 Rocky Mountain Mathematics Consortium

Received by the editors on August 18, 1986, and in revised form on February 19, 1989.