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TWO WEIGHTED (L?,L?) ESTIMATES
FOR THE FOURIER TRANSFORM

S. BLOOM, W.B. JURKAT AND G. SAMPSON

0. Introduction and notation. In this paper we continue to
study the two-weight problem for the Fourier transform. The problem
is for given p and g with 1 < p < g < 00, to determine necessary and
sufficient conditions on w and v so that

00 ([ @i dx)p/q <c [ \rowas,

where C is a positive constant independent of f.

In the case where w and 1/v are radial and symmetrically decreasing,
this was completely solved in Theorem 2 of [4]. There the Fourier
transform problem was reduced to the two-weight problem for the
Hardy operator.

In two dimensions (n = 2) for p = ¢ = 2, Kerman and Sawyer solved
the problem when w and 1/v are symmetrically decreasing in each of
their variables. Here they showed that the Fourier transform problem
can be reduced to a two-weight problem for the two-dimensional Hardy
operator, solved by Sawyer in [6], where he also presented these results.

Heinig and Sinnamon in [2] were able to generalize these results of
Kerman and Sawyer to n-dimensions for conjugate exponents, where w
decreases in each of its variables and v has the special form v(z) =
w(1/z)P/4 (note 1/ = (1/xy,1/za,...,1/x,)). Furthermore, the
necessary and sufficient conditions they obtain are quite easy to apply.

We obtain the following results. In Section 2, in n-dimension, for
weights w and 1/v that are symmetrically decreasing in each of their
variables, we reduce the Fourier transform problem to a two-weight
problem for the n-dimensional Hardy operator. Here p < ¢, with ¢ a
positive even integer. We should point out, though, that the Hardy
problem is still open in three or higher dimensions.
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