K-THEORY AND EXT-THEORY FOR RECTANGULAR UNITARY C*-ALGEBRAS

KEVIN McCLANAHAN

- 1. Introduction. Much study has been done on the C^* -algebras O_n generated by n isometries S_1, S_2, \ldots, S_n such that $S_1S_1^*+\cdots+S_nS_n^*=1$. These algebras were introduced by Cuntz in [9] (see also [6, 7, 8, 11, 15, 16]). The K-theory of these algebras has been computed by Cuntz in [7]. The Ext-groups have been computed by Pimsner and Popa in [16] (see also [15]). In [3], Brown introduced the C^* -algebra $U_n^{\rm nc}$ generated by elements u_{ij} , $1 \leq i, j \leq n$, satisfying the relations which make the matrix $[u_{ij}]$ a unitary matrix. The K-groups of $U_n^{\rm nc}$ were computed in [14], where it was also shown that $U_n^{\rm nc}$ has no nontrivial projections. In [18], Voiculescu defined the $m \times n$ version of $U_n^{\rm nc}$ which we will denote $U_{(n,n)}^{\rm nc}$. The algebras O_n and $U_n^{\rm nc}$ correspond to $U_{(1,n)}^{\rm nc}$ and $U_{(n,n)}^{\rm nc}$, respectively. We will show that $U_{(m,n)}^{\rm nc}$ is isomorphic to the commutant of the m+n by m+n matrices in a certain amalgamated free product C^* -algebra. We will also prove some partial results about the K-theory of $U_{(m,n)}^{\rm nc}$ and also compute their Ext-groups.
- 2. The C^* -algebra $U^{\text{nc}}_{(m,n)}$. We define $U^{\text{nc}}_{(m,n)}$ as follows. $U^{\text{nc}}_{(m,n)}$ is generated by elements u_{ij} , $1 \leq i \leq m$, $1 \leq j \leq n$, subject to the following relations on $u = [u_{ij}] : u^*u = I_n$ and $uu^* = I_m$, where I_k denotes the k by k identity matrix. $U^{\text{nc}}_{(m,n)}$ has the universal property that if B is any unital C^* -algebra with elements v_{ij} for which $v = [v_{ij}]$ satisfies the same relations as u, then there is a unique unital *-homomorphism $\phi: U^{\text{nc}}_{(m,n)} \to B$ such that $\phi(u_{ij}) = v_{ij}$. Clearly, any two C^* -algebras which satisfy the above property are canonically isomorphic. If u_{ij} and v_{kl} denote the generators of $U^{\text{nc}}_{(m,n)}$ and $U^{\text{nc}}_{(n,m)}$, respectively, then the map $u_{ij} \mapsto v^*_{ji}$ induces an isomorphism from $U^{\text{nc}}_{(m,n)}$ onto $U^{\text{nc}}_{(m,m)}$. As a result of this observation, we will restrict our attention to the $m \leq n$ cases.

There are two special cases of interest. If m=n, then $U_{(n,n)}^{\text{nc}}$ is the C^* -algebra U_n^{nc} defined by Brown in [4]. If m=1, then let $S_j=u_{1j}$.

Received by the editors on March 29, 1991.

Copyright ©1993 Rocky Mountain Mathematics Consortium