AUTOMORPHISMS AND DERIVATIONS OF DIFFERENTIAL EQUATIONS AND ALGEBRAS

MICHAEL K. KINYON AND ARTHUR A. SAGLE

Dedicated to Paul Waltman on the occasion of his 60th birthday

1. Introduction and main results. We consider autonomous differential equations

$$\dot{X} = F(X)$$

in \mathbf{R}^n where $F: \mathbf{R}^n \to \mathbf{R}^n$ is smooth and $\dot{X} = (dX/dt)$. An automorphism of F is an invertible linear transformation $\varphi: \mathbf{R}^n \to \mathbf{R}^n$ satisfying

(2)
$$F(\varphi X) = \varphi F(X)$$

for all $X \in \mathbf{R}^n$. The set $\operatorname{Aut} F$ of all automorphisms of F is a closed (Lie) subgroup of $GL(n, \mathbf{R})$. Equivalently, one can define $\operatorname{Aut} F$ to be the largest closed subgroup of $GL(n, \mathbf{R})$ relative to which F is (Aut F)-equivariant.

If $\phi_t(X)$ denotes the flow associated with equation (1), then for each $\varphi \in \operatorname{Aut} F$ we have

$$\phi_t \circ \varphi = \varphi \circ \phi_t.$$

Conversely, any invertible linear transformation satisfying (3) is an automorphism of F (see [5, Lemma 5.2]).

A derivation of F is a linear transformation $D: \mathbf{R}^n \to \mathbf{R}^n$ satisfying

$$(4) DF(X) = F'(X) \cdot DX$$

for all $X \in \mathbf{R}^n$; here $F'(X) \cdot Y = (dF(X + sY)/ds)|_{s=0}$. The set Der F of all derivations of F is a Lie subalgebra of $gl(n, \mathbf{R})$. If $D \in \text{Der } F$,

Received by the editors on March 3, 1993.