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SOLVING (I — S)g = f
WHEN S IS A GENERALIZED SHIFT OPERATOR

A. DELIU AND M.C. SPRUILL

ABSTRACT. Solutions to the equation (I—S)g = f include
Weierstrass functions and fractal interpolation functions of
Barnsley. Closure of the range of I — S in C and L" is
characterized when ||S|| = 1 and solutions g are represented
as weak Abel-like limits.

1. Introduction. Solutions to the equation
(1.1) (I-S)g=f

are studied, where S is a generalized shift operator defined in Section
2. The closures of the ranges of the operators I — S in the spaces C
and LP depend upon parameters in S. They are characterized simply,
and it is shown that solutions g can be obtained as Abel limits.

In the case of the ordinary shift operator S = ¥ defined by X f(t) =
f(2t) Fortet [3] stated that if f is a Lip («), a > 1/2, periodic function

with period 1 and with fol f(t)dt = 0, then the equation (1.1) has a
solution g in L? if and only if

) ;
E/o ;f@t)

as n — oo. Kac [5] proved the theorem and Cieselski [2] proved it for
all @ > 0. Rochberg [6] studied a more general equation in the context
of shift operators on a Hilbert space and showed that Kac’s result is
an immediate consequence of his results.

When ||S|| < 1 there is for each right hand side f of (1.1) a unique
solution given by the Neumann series

(1.2) g= Zsjf_

j=20

2
dt — 0
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