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STABILITY PROPERTY AND PHASE SPACE

JUNJI KATO

1. Introduction. Recently Murakami and Yoshizawa [16] have
discussed the relationship between the BC-stability and the p-stability
in a class of functions bounded by a priori bound for a functional
differential equation defined on a phase space X with a seminorm ||-||x.
The BC-stability means that the solution remains small if the initial
function is small with respect to the BC-norm, |- |(_s 0], while the
p-stability corresponds to the p-metric:
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where |¢|; :=sup,¢; |¢(s)| for an interval I.

The situation above is rather complex; there appear three metrics,
and the restriction to the class of functions bounded by a bound will
be observed to effect on these metrics.

The purpose of this paper is to clarify the relationships between these
metrics and to give a unified aspect on the concepts of the stability by
allowing more flexibility in the choice of the phase space. Haddock and
Hornor [7] have introduced the concept of the H-stability related with
a fading memory subspace H of X, see the latter, Example 3, for the
definition. Our idea will show that this turns out to be a problem of
the choice of the suitable phase space.

Consider the equation

(E) :E(t) = f(tv xt)v

where f(t, ) is defined and continuous on [0, co) X X for a phase space
X. Then it will be easier to see the existence of a solution in a space
with a weaker topology if f(¢, ) endows an adequate regularity there.
However, the weaker the topology of the space is, the more meager
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