INCLUSION THEOREMS FOR CONVOLUTION PRODUCT OF SECOND ORDER POLYLOGARITHMS AND FUNCTIONS WITH THE DERIVATIVE IN A HALFPLANE

S. PONNUSAMY

ABSTRACT. For $\beta < 1$ and real η , let $\mathcal{R}_{\eta}(\beta)$ denote the family of normalized analytic functions f defined in the unit disc Δ such that Re $[e^{i\eta}(f'(z)-\beta)]>0$ for $z\in\Delta$. Given a generalized second order polylogarithm function

$$G(a,b;z) = \sum_{n=1}^{\infty} \frac{(a+1)(b+1)}{(n+a)(n+b)} z^n,$$

$$a,b \in \mathbb{C} \setminus \{-1,-2,-3,\cdots\},$$

we place conditions on the parameters a, b and β to guarantee that the Hadamard product of the power series G(a,b;z)*f(z) will be univalent, starlike or convex. We also give conditions on a and b to describe the geometric nature of the function G(a,b;z). By taking f in the class of convex functions, we also find a sufficient condition for G(a,b;z)*f(z) to belong to the class $\mathcal{R}_0(\beta)$. Several open problems have been raised at the end

1. Introduction and main results. Let C denote the complex plane, and let $\Delta = \{z \in \mathbf{C} : |z| < 1\}$. Denote by \mathcal{H} the linear space of all functions f analytic in Δ , endowed with the usual topology of uniform convergence on compact subsets and by \mathcal{A} the subset of \mathcal{H} with the normalization f(0) = 0 = f'(0) - 1. We say that the function $f \in \mathcal{A}$ is convex (denoted by $f \in \mathcal{K}$) if f maps Δ onto a convex domain. The function $f \in \mathcal{A}$ is said to be starlike (denoted by $f \in \mathcal{S}^*$) if f maps Δ onto a domain which is starlike with respect to the origin. Denote by $\mathcal{S}, \mathcal{C}(\beta), \mathcal{S}^*(\beta)$ and $\mathcal{K}(\beta)$, the subsets consisting of functions in \mathcal{A} , which are, respectively, univalent, close-to-convex of order β , starlike (with respect to the origin) of order β and convex of order β , where

Received by the editors on January 4, 1996.
1980 AMS Mathematics Subject Classification (1985 Revision). 30C45.
Key words and phrases. Univalent, starlike, convex, close-to-convex, polylogarithm and dilogarithm functions.