ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 28, Number 4, Winter 1998

NORMAL LIMITS IN STAR-INVARIANT SUBSPACES IN MULTIPLY CONNECTED DOMAINS

JAWAD SADEK

ABSTRACT. In this paper we give a necessary and sufficient condition for the normal limit to exist at a point on the smooth boundary of a multiply connected domain in the plane, for a function in the star-invariant subspace.

Introduction. Let U be the open unit disc in the complex plane, and denote by H^p , 0 , the usual classes of analytic functionson <math>U [9, 13, 12]. Let φ be an inner function and write $\varphi = cBS_{\sigma}$ where |c| = 1, B is a Blaschke product with zero sequence $\{z_k\}$, and S_{σ} is a singular inner function with positive measure σ which is singular with respect to Lebesgue measure [9, 13, 12].

In [2, Lemma 3] Ahern and Clark gave the following generalization of a famous theorem of Frostman [10] concerning the existence of the radial limit of a Blaschke product at a given point in T, the unit circle.

Theorem A. Let ζ_0 be on the unit circle T, and suppose $\varphi = BS_{\sigma}$ and $\sigma(\{\zeta_0\}) = 0$. Then the following conditions are equivalent:

- (i) Every divisor of φ has a radial limit of modulus 1 at ζ_0 .
- (ii) Every divisor of φ has a radial limit at ζ_0 .
- (iii) $\sum_{k=1}^{\infty} (1-|z_k)|/|\zeta_0-z_k| + \int_T d\sigma(u)/|u-\zeta_0| < \infty.$

We say that f is a divisor of φ if $\varphi = fg$ where both f and g lie in the unit ball of H^{∞} .

In [6, Theorem 3.1], Cohn noticed that condition (iii) implies a stronger result than (ii). Let φ be an inner function, and let

$$K_2 \equiv H^2 \ominus \varphi H^2$$

be the star-invariant subspace generated by φ . Let *BMOA* denote the space of analytic functions of bounded mean oscillation and define $K_* \equiv K_2 \cap BMOA$. Then we have the following result.

Received by the editors on September 12, 1995.

Copyright ©1998 Rocky Mountain Mathematics Consortium