GRAPHS OF CONVEX FUNCTIONS ARE $\sigma 1$-STRAIGHT

RICHARD DELAWARE

Abstract

A set $E \subseteq \mathbf{R}^{n}$ is s-straight for $s>0$ if E has finite Method II outer s-measure equal to its Method I outer s-measure. If E is Method II s-measurable, this means E has finite Hausdorff s-measure equal to its Hausdorff s-content. The graph Γ of a convex function $f:[a, b] \rightarrow \mathbf{R}$ is shown to be a countable union of 1-straight sets, and to contain a 1straight set maximal in the sense that its Hausdorff 1-measure equals the diameter of Γ.

1. Introduction. In [7], Foran introduced the notion of an s straight set (Definition 2), that is, a set whose (finite) Hausdorff s measure and Hausdorff s-content are equal. In [1], [2] we continued the first analysis of such sets, among other results proving that a quarter circle is a countable union of 1 -straight sets, verifying a conjecture of Foran. Here, by a different argument we extend that result, proving that the graph of any convex function $f:[a, b] \rightarrow \mathbf{R}$ is a countable union of 1-straight sets (Theorem 7). In [4], using yet another different argument, we extend this result further to graphs of continuously differentiable, absolutely continuous, and increasing continuous functions, as well as to regular 1-sets in \mathbf{R}^{2}. Finally, in [3] we prove a general theorem which implies that every set of finite s-measure is a countable union of s-straight sets.

Before proceeding to the main results, we provide some necessary background information. Let d be the standard distance function on \mathbf{R}^{n} where $n \geq 1$. The diameter of an arbitrary nonempty set $U \subseteq \mathbf{R}^{n}$ is defined by $|U|=\sup \{d(x, y): x, y \in U\}$, with $|\varnothing|=0$. Given $0<\delta \leq \infty$, let C_{δ}^{n} represent the collection of subsets of \mathbf{R}^{n} with diameter less than δ.

[^0]
[^0]: 1991 AMS Mathematics Subject Classification. Primary 28A78, 28A05.
 Key words and phrases. s-straight, σs-straight, convex, Hausdorff.
 Received by the editors on January 24, 2001, and in revised form on April 17, 2002.

