ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 2, 2005

CONVOLUTION AND FOURIER TRANSFORM **OVER THE SPACES** $\mathcal{K}'_{n,k}$, p > 1

BYUNG KEUN SOHN AND DAE HYEON PAHK

ABSTRACT. We introduce the space $\mathcal{K}_{p,k}, p > 1$ that is the vector space of all C^{∞} -functions f such that $e^{k|x|^p} \partial^{\alpha} f$ vanishes at infinity for all $\alpha \in N^n$ and its dual $\mathcal{K}'_{p,k}$. For $f,g \in \mathcal{K}'_{p,2^pk}, \ k \in Z, \ k < 0$, we study the linear functional $f \otimes g$ on $\mathcal{K}_{p,k}$ defined by

$$\langle f \otimes g, \phi \rangle = \langle f(x), \langle g(y), \phi(x+y) \rangle \rangle, \quad \phi \in \mathcal{K}_{p,k}$$

Also, we show a representation theorem and an inversion formula for the usual distributional Fourier transform over the spaces $\mathcal{K}'_{p,k}, k \in \mathbb{Z}, k < 0.$

1. Introduction. For spaces of functions and distributions we use the notations and terminology of Horvath [3]. In particular, \mathcal{S}_k is the space of all infinitely differentiable functions f on \mathbb{R}^n such that $(1+|x|^2)^k \partial^{\alpha} f(x)$ vanishes at infinity for all $\alpha \in N^n$.

We denote \mathcal{K}_p , $p \geq 1$, the space of all functions $\phi \in C^{\infty}(\mathbb{R}^n)$ such that

$$\nu_k(\phi) = \sup_{\substack{x \in \mathbb{R}^n \\ |\alpha| \le k}} e^{k|x|^p} |D^{\alpha}\phi(x)| < \infty, \quad k = 1, 2, \dots,$$

where $D^{\alpha} = (i^{-1}\partial/\partial x_1)^{\alpha_1} \cdots (i^{-1}\partial/\partial x_n)^{\alpha_n}$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$. The space \mathcal{K}_p with semi-norm $\nu_k, k = 1, 2, \dots$ is a Frechet space and the space of C^{∞} -functions with compact support \mathcal{D} is a dense subset of \mathcal{K}_p . By \mathcal{K}'_p we mean the space of continuous linear functionals on \mathcal{K}_p . For further details, we refer to [4].

We introduce the spaces $\mathcal{K}_{p,k}(\mathbb{R}^n)$, p > 1, that are defined as the vector spaces of all functions f defined on \mathbb{R}^n which possess continuous

²⁰⁰⁰ AMS Mathematics Subject Classification. 46F10, 46F05.

Key words and phrases. Distribution, convolution, Fourier transform. This work was supported by 2002 Inje University Research Grant and KRF-2003-005-C00012.

Copyright ©2005 Rocky Mountain Mathematics Consortium