SPACES OF λ -MULTIPLIER CONVERGENT SERIES

JUNDE WU, LINSONG LI AND CHENGRI CUI

ABSTRACT. In this paper, we introduce the quasi 0-gliding hump property of sequence spaces and study a series of elementary properties of spaces of λ -multiplier convergent series.

1. Introduction. Let (X,T) be a Hausdorff locally convex space, X^* the topological dual space of (X,T) and λ a scalar-valued sequence space. A series $\sum_{i} x_{i}$ in X is said to be λ -multiplier T-convergent if, for each $(t_j) \in \lambda$, there exists an $x \in X$ such that the series $\sum_{j=1}^{\infty} t_j x_j$ is T-convergent to x.

Let c_{00} be the scalar valued sequence space which are 0 eventually, the β -dual space of λ to be defined by: $\lambda^{\beta} = \{(u_j) : \sum_j u_j t_j \text{ is convergence } \}$ for each $(t_j) \in \lambda$. It is obvious that if $c_{00} \subseteq \lambda$, then $[\lambda, \lambda^{\beta}]$ is a dual pair with respect to the bilinear pairing $[\bar{t}, \bar{u}] = \sum_j u_j t_j$, where $\bar{t} = (t_j) \in \lambda$, $\bar{u} = (u_j) \in \lambda^{\beta}$. Let $\tau(\lambda, \lambda^{\beta})$ denote the Mackey topology of λ with respect to the dual pair $[\lambda, \lambda^{\beta}]$, i.e., the topology of uniform convergent on all absolutely convex $\sigma(\lambda^{\beta}, \lambda)$ -compact subsets of λ^{β} , and $k(\lambda, \lambda^{\beta})$ the topology of uniform convergent on all $\sigma(\lambda^{\beta}, \lambda)$ -compact subsets of λ^{β} . It is clear that $k(\lambda, \lambda^{\beta})$ is stronger than $\tau(\lambda, \lambda^{\beta})$.

Lemma 1 [14]. Let $c_{00} \subseteq \lambda$ and τ_1 be a vector topology on λ^{β} such that τ_1 is stronger than the coordinate convergence topology. Then the following states are equivalent:

- (1) $B \subseteq \lambda^{\beta}$ is τ_1 -compact;
- (2) $B \subseteq \lambda^{\beta}$ is τ_1 -sequentially compact.

Received by the editors on October 31, 2002. AMS Mathematics Subject Classification. Primary 46A03, 46E40. Key words and phrases. Locally convex space, sequence space, λ -multiplier convergent series.

The project was supported by the Natural Science Fund of China (10471124) and (10361005) and the BK21 Post-Doctor Research Fund of Seoul National University of Korea.