ON THE ZEROES OF TWO FAMILIES OF POLYNOMIALS ARISING FROM CERTAIN RATIONAL INTEGRALS

JOHN B. LITTLE

Abstract

We prove a conjecture of Boros, Moll and Shallit on the location of the zeroes of certain polynomials arising in the evaluation of the rational definite integrals $\int_{0}^{\infty}\left[d x /\left(x^{4}+2 a x^{2}+1\right)^{m+1}\right]$.

1. Introduction. In a series of recent papers George Boros, Victor Moll, and a number of coauthors have studied patterns in closed form expressions for the rational definite integrals

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}, \quad a>-1 \tag{1}
\end{equation*}
$$

The recent article [4] gives some of the interesting background behind this line of investigation and a survey of their results. In this note we will take up a question concerning certain polynomials connected to the integrals (1) introduced in [1].

A standard argument shows that (1) is equal to

$$
\frac{\pi\binom{2 m}{m}}{2^{3 m+3 / 2}(a+1)^{m+1 / 2}}{ }_{2} F_{1}(-m, m+1 ; 1 / 2-m ;(1+a) / 2)
$$

where ${ }_{2} F_{1}$ is the usual hypergeometric series. For positive integral m, the hypergeometric series terminates and the authors of [1] study the polynomials in the variable a defined by $P_{m}(a)=\binom{2 m}{m}{ }_{2} F_{1}(-m, m+$ $1 ; 1 / 2-m ;(1+a) / 2)$. For each $m, P_{m}(a)$ is a polynomial all of whose coefficients are positive integers.
Let $d_{l}(m)$ be the coefficient of a^{l} in $P_{m}(a)$. In [1], it is shown that

$$
d_{l}(m)=\frac{1}{l!m!2^{m+l}}\left(\alpha_{l}(m) \prod_{k=1}^{m}(4 k-1)-\beta_{l}(m) \prod_{k=1}^{m}(4 k+1)\right)
$$

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 12D10, Secondary 33C05.

 Received by the editors on October 3, 2002.

