COHEN-MACAULAY DIMENSION OF MODULES OVER NOETHERIAN RINGS

J. ASADOLLAHI AND SH. SALARIAN

Abstract

We extend a criterion of Gerko for a ring to be Cohen-Macaulay to arbitrary, not necessarily local, Noetherian rings. Our version reads as follows: The Noetherian ring R is Cohen-Macaulay if and only if, for all finitely generated R-modules $M, \mathrm{CM}-\operatorname{dim}_{R} M$ is finite.

1. Introduction. There are many important homological dimensions, defined for finitely generated module M over a commutative Noetherian ring R. The classic one is projective dimension P-dim, which characterizes regular rings by a famous result of Auslander, Buchbaum and Serre. Another dimension corresponding to the complete intersection property of ring is defined by Avramov, Gasharov and Peeva [4] and is denoted by CI-dim. Gerko also defined a dimension which reflects the complete intersection property of the ring called polynomial complete intersection dimension and denoted PCI-dim [7]. Oana Veliche [9] called it lower complete intersection dimension and used notion CI_{*}-dim to denote it. The notion of G-dimension was introduced by Auslander and Bridge, denoted G-dim, and has some relation to the Gorenstein property of $R[\mathbf{1}]$. There is another dimension, defined by Veliche, called upper Gorenstein dimension or G^{*} dimension, denoted G^{*}-dim that characterizes Gorenstein local rings. Dimension which reflects Cohen-Macaulay property of rings is defined also by Gerko, called Cohen-Macaulay dimension and denoted CM-dim [7].

Putting them together and using the same terminology as in [9], we have notions of homological dimensions of finitely generated module M, denoted $\mathrm{H}-\operatorname{dim}_{R} M$ for $\mathrm{H}=\mathrm{P}, \mathrm{CI}, \mathrm{CI}_{*}, \mathrm{G}, \mathrm{G}^{*}$ or CM . We say that, not necessary local, ring R has property (H) with $\mathrm{H}=\mathrm{P}$, (respectively,

[^0]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 13C15, 13C14, Secondary $13 \mathrm{H} 05,13 \mathrm{D} 22$.

 Key words and phrases. Cohen-Macaulay ring, Cohen-Macaulay dimension.
 This research was in part supported by a grant from IPM (No. 81130030 and No. 81130117).

 Received by the editors on July 15 2002, and in revised form on March 17, 2003.

