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OSCILLATION RESULTS FOR
LINEAR MATRIX HAMILTONIAN SYSTEMS

YUAN GONG SUN AND FANWEI MENG

ABSTRACT. In this paper we present new oscillation cri-
teria in terms of the coefficient functions for the matrix linear
Hamiltonian systems X′ = A(t)X + B(t)Y , Y ′ = C(t)X −
A∗(t)Y , which are not contained in our recent paper [15],
and improve the main results in [15] to some extent.

1. Introduction. Consider the linear Hamiltonian system

(1.1)
{

X ′ = A(t)X + B(t)Y
Y ′ = C(t)X − A∗(t)Y,

t ≥ t0

where X(t), Y (t), A(t), B(t), C(t) are n × n real continuous matrix
functions such that B(t) and C(t) are symmetric and B(t) is positive
definite, i.e., B(t) > 0 for t ≥ t0. By M∗ we mean the transpose of the
matrix M .

For any two solutions X1(t), Y1(t) and X2(t), Y2(t) of (1.1) the
Wronskian X∗

1 (t) Y2(t)−Y ∗
1 (t)X2(t) is a constant matrix. In particular,

for any solution X(t), Y (t) of (1.1), X∗(t)Y (t)−Y ∗(t)X(t) is a constant
matrix. We now recall for the sake of convenience of reference the
following definitions from the earlier literature.

Definition 1.1. A solution X(t), Y (t) of (1.1) is said to be nontrivial
if detX(t) �= 0 for at least one t ∈ [t0,∞).

Definition 1.2. A nontrivial solution X(t), Y (t) of (1.1) is said to
be prepared if, for every t ∈ [t0,∞),

(1.2) X∗(t)Y (t) − Y ∗(t)X(t) = 0.
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