NEW CONGRUENCES FOR ODD PERFECT NUMBERS

LUIS H. GALLARDO AND OLIVIER RAHAVANDRAINY

> ABSTRACT. We present some new congruences for odd perfect numbers improving on a congruence modulo 2 of Ewell.

1. Introduction. Our notation is classical. First of all, for a positive integer n we denote by $\sigma(n)$ the sum of all positive divisors of n; secondly we say that such an integer n is perfect if one has

$$
2 n=\sigma(n) .
$$

The main result of Ewell's paper [2] is the following. If n is an odd perfect number, then

$$
\begin{equation*}
n^{2}+\sum_{k=1}^{(n-1) / 2} \sigma(2 k-1) \sigma(2 n-(2 k-1)) \equiv 0(\bmod 2) \tag{1}
\end{equation*}
$$

The proof is intricate. It turns out that there is a simple proof of this result, see Theorem 2.6. It is a consequence of an easy counting argument and some formulae from Touchard [5] involving the "convolution" sums

$$
S_{r}(n)=\sum_{k=1}^{n-1} k^{r} \sigma(k) \sigma(n-k)
$$

This will be the first part of our paper.
In the second part, we will show that there is a simple relation between Ewell's sum as well as the "odd part" of the convolution sums for $r=0$, when computed over $2 n$ instead of over n, i.e.,

$$
S_{0}^{*}(2 n)=\sum_{\substack{k=1 \\ k \text { odd }}}^{2 n-1} \sigma(k) \sigma(2 n-k)
$$

[^0]
[^0]: Received by the editors on March 10, 2003, and in revised form on June 23, 2003.

