ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 1, 2006

NEW CONGRUENCES FOR ODD PERFECT NUMBERS

LUIS H. GALLARDO AND OLIVIER RAHAVANDRAINY

ABSTRACT. We present some new congruences for odd perfect numbers improving on a congruence modulo 2 of Ewell.

1. Introduction. Our notation is classical. First of all, for a positive integer n we denote by $\sigma(n)$ the sum of all positive divisors of n; secondly we say that such an integer n is perfect if one has

$$2n = \sigma(n).$$

The main result of Ewell's paper [2] is the following. If n is an odd perfect number, then

(1)
$$n^2 + \sum_{k=1}^{(n-1)/2} \sigma(2k-1) \ \sigma(2n-(2k-1)) \equiv 0 \pmod{2}.$$

The proof is intricate. It turns out that there is a simple proof of this result, see Theorem 2.6. It is a consequence of an easy counting argument and some formulae from Touchard [5] involving the "convolution" sums

$$S_r(n) = \sum_{k=1}^{n-1} k^r \,\sigma(k) \,\sigma(n-k)$$

This will be the first part of our paper.

In the second part, we will show that there is a simple relation between Ewell's sum as well as the "odd part" of the convolution sums for r = 0, when computed over 2n instead of over n, i.e.,

$$S_0^*(2n) = \sum_{\substack{k=1 \\ k \text{ odd}}}^{2n-1} \sigma(k) \ \sigma(2n-k)$$

Received by the editors on March 10, 2003, and in revised form on June 23, 2003.

Copyright ©2006 Rocky Mountain Mathematics Consortium