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A SIMPLE PROOF THAT A LINEARLY ORDERED
SPACE IS HEREDITARILY AND COMPLETELY

COLLECTIONWISE NORMAL

F.S. CATER

It is known [1] that a linearly ordered space is hereditarily collec-
tionwise normal. In this note we give a simpler proof that a linearly
ordered space is both hereditarily and completely collectionwise normal
[3, p. 168].

Let X be a linearly ordered set endowed with the usual open interval
topology. We denote intervals in the usual way by (a, b), (a, b], [a, b)
or [a, b]. We prove

Theorem I. Let {Ai} be a family of subsets of X such that each Ai

is disjoint from the closure of ∪j �=iAj. Then there is a family {Ui} of
mutually disjoint open sets such that Ai ⊂ Ui for each index i.

Proof. For convenience, put P = ∪iAi. We say that points
a, b ∈ X\P are equivalent if the interval joining a to b is a subset
of X\P . Then X\P is partitioned into equivalence classes we call the
components of X\P . Use the Axiom of Choice to select a point f(C)
in each component C.

Fix an index i. For each x ∈ Ai that is not the greatest point in X
we select a point tx > x as follows:

Case (1). If x is a right accumulation point of Ai, select tx ∈ Ai so
that tx > x and the interval (x, tx) is disjoint from P\Ai.

Case (2). If x has an immediate successor, we designate it by tx.
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