ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 4, 2006

A SIMPLE PROOF THAT A LINEARLY ORDERED SPACE IS HEREDITARILY AND COMPLETELY COLLECTIONWISE NORMAL

F.S. CATER

It is known [1] that a linearly ordered space is hereditarily collectionwise normal. In this note we give a simpler proof that a linearly ordered space is both hereditarily and completely collectionwise normal [3, p. 168].

Let X be a linearly ordered set endowed with the usual open interval topology. We denote intervals in the usual way by (a, b), (a, b], [a, b) or [a, b]. We prove

Theorem I. Let $\{A_i\}$ be a family of subsets of X such that each A_i is disjoint from the closure of $\bigcup_{j \neq i} A_j$. Then there is a family $\{U_i\}$ of mutually disjoint open sets such that $A_i \subset U_i$ for each index *i*.

Proof. For convenience, put $P = \bigcup_i A_i$. We say that points $a, b \in X \setminus P$ are equivalent if the interval joining a to b is a subset of $X \setminus P$. Then $X \setminus P$ is partitioned into equivalence classes we call the *components* of $X \setminus P$. Use the Axiom of Choice to select a point f(C) in each component C.

Fix an index *i*. For each $x \in A_i$ that is not the greatest point in X we select a point $t_x > x$ as follows:

Case (1). If x is a right accumulation point of A_i , select $t_x \in A_i$ so that $t_x > x$ and the interval (x, t_x) is disjoint from $P \setminus A_i$.

Case (2). If x has an immediate successor, we designate it by t_x .

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 54F05, 54D15, 54A05. Key words and phrases. Linearly ordered space, hereditarily and completely collectionwise normal.

Received by the editors on October 15, 2003.