BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 5, 2006

ON THE LUPAS *q***-ANALOGUE** OF THE BERNSTEIN OPERATOR

SOFIYA OSTROVSKA

ABSTRACT. Let $R_n(f,q;x)$: $C[0,1] \rightarrow C[0,1]$ be qanalogues of the Bernstein operators defined by Lupaş in 1987. If q = 1, then $R_n(f, 1; x)$ are classical Bernstein polynomials. For $q \neq 1$, the operators $R_n(f,q;x)$ are rational functions rather than polynomials. The paper deals with convergence properties of the sequence $\{\overline{R_n(f,q;x)}\}$. It is proved that $\{R_n(f, q_n; x)\}$ converges uniformly to f(x) for any $f(x) \in C[0,1]$ if and only if $q_n \to 1$. In the case $q > 0, q \neq 1$ being fixed the sequence $\{R_n(f,q;x)\}$ converges uniformly to $f(x) \in C[0,1]$ if and only if f(x) is linear.

1. Introduction. In 1912 Bernstein ([2]) found his famous proof of the Weierstrass approximation theorem. Using probability theory he defined polynomials called nowadays Bernstein polynomials as follows.

Definition [2]. Let $f : [0,1] \to \mathbf{R}$. The Bernstein polynomial of f is

$$B_n(f;x) := \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}, \quad n = 1, 2, \dots$$

Bernstein proved that, if $f \in C[0,1]$, then the sequence $\{B_n(f;x)\}$ converges uniformly to f(x) on [0, 1].

Definition. The Bernstein operator $B_n : C[0,1] \to C[0,1]$ is given by

$$(B_n)f(x) := B_n(f;x), \quad n = 1, 2, \dots$$

Later it was found that Bernstein polynomials possess many remarkable properties, which made them an area of intensive research. A systematic treatment of the theory of Bernstein polynomials as it was

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 41A10, 41A36.

Key words and phrases. Bernstein polynomials, q-integers, q-binomial coefficients, convergence. Received by the editors on July 23, 2003, and in revised form on March 23, 2004.