A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUMS OF LNQD RANDOM VARIABLES AND ITS APPLICATION

MI-HWA KO, DAE-HEE RYU, TAE-SUNG KIM AND YONG-KAB CHOI

Abstract

In this paper we derive the central limit theorem for $\sum_{i=1}^{n} a_{n i} \xi_{i}$, where $\left\{a_{n i}, 1 \leq i \leq n\right\}$ is a triangular array of nonnegative numbers such that $\sup _{n} \sum_{i=1}^{n} a_{n i}^{2}<\infty$, $\max _{1<i<n} a_{n i} \rightarrow 0$ as $n \rightarrow \infty$ and ξ_{i} 's are a linearly negative quadrant dependent sequence. We also apply this result to consider a central limit theorem for a partial sum of a generalized linear process of the form $X_{n}=\sum_{j=-\infty}^{\infty} a_{k+j} \xi_{j}$.

1. Introduction and results. Lehmann [8] introduced a simple and natural definition of positive (negative) dependence: A sequence $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ of random variables is said to be pairwise positive (negative) quadrant dependent (pairwise $\mathrm{PQD}(\mathrm{NQD})$) if, for any real α_{i}, α_{j} and $i \neq j P\left(\xi_{i}>\alpha_{i}, \xi_{j}>\alpha_{j}\right) \geq(\leq) P\left(\xi_{i}>\alpha_{i}\right) P\left(\xi_{j}>\alpha_{j}\right)$. Much stronger dependent concepts than PQD and NQD were considered by Esary, Proschan and Walkup [4] and Joag-Dev and Proschan [6], respectively. A sequence $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ of random variables is said to be associated if, for any real coordinatewise increasing functions f, g on $\mathbf{R}^{n}, \operatorname{Cov}\left(f\left(\xi_{1}, \ldots, \xi_{n}\right), g\left(\xi_{1}, \ldots, \xi_{n}\right)\right) \geq 0$ and $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ is said to be negatively associated if, for any disjoint subsets, $A, B \subset\{1,2, \ldots, n\}$ and any real coordinatewise increasing functions f on \mathbf{R}^{A} and g on $\mathbf{R}^{B}, \operatorname{Cov}\left(f\left(\xi_{i}, i \in A\right), g\left(\xi_{i} \in B\right)\right) \leq 0$.

Instead of association (negative association) Newman's [10] central limit theorem requires only that positive linear combinations of the random variables are PQD (NQD). The definition of positive (negative) dependence introduced by Newman [10] is the following: A sequence $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ of random variables is said to be linearly positive

[^0]
[^0]: AMS Mathematics Subject Classification. Primary 60F05, 60G10.
 Key words and phrases. Central limit theorem, linear process, linearly negative quadrant dependent, uniformly integrable, triangular array.

 This work was supported by KOSEF(R01-2005-000-10696-0), the KRF Grant funded by Korea Government (KRF-2006-353-C00006) and the Chung Woon University grant in 2007.

 Received by the editors on March 11, 2004, and in revised form on July 1, 2004.

