ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 37, Number 2, 2007

CONVERGENCE BY NONDISCRETE MATHEMATICAL INDUCTION OF A TWO STEP SECANT'S METHOD

S. AMAT, C. BERMÚDEZ, S. BUSQUIER AND J. GRETAY

ABSTRACT. We use the nondiscrete mathematical induction method for the semi-local convergence of a two step secant's iterative scheme on a Banach space. The scheme does not need to evaluate neither any Fréchet derivative nor any bilinear operator, but having a high speed of convergence.

1. Introduction. We consider the problem of approximating locally the unique solution x^* of a nonlinear equation

$$(1) f(x) = 0$$

where f is a continuous operator defined on the closed convex domain D of a Banach space E_1 with values in a Banach space E_2 .

We use the two step Steffensen's method given by

(2)
$$y_{n+1} = x_n - [x_n, x_n + \alpha_n(y_n - x_n); f]^{-1} f(x_n),$$

$$x_{n+1} = y_{n+1} - [x_n, x_n + \alpha_n(y_n - x_n); f]^{-1} f(y_{n+1}), \quad n \ge 0.$$

to generate two sequences converging to x^* .

In order to control the stability in practice, the α_n can be computed such that

$$\operatorname{tol}_c << |\alpha_n(y_n - x_n)| \le \operatorname{tol}_u,$$

where tol_c is related with the computer precision and tol_u is a free parameter.

Here $[x, y; f] \in L(E_1, E_2)$ is a divided difference of order one for the operator f on the points $x, y \in D$. If f is Fréchet differentiable, then

(3)
$$[x,y;f] = \int_0^1 f'(x+t(y-x)) dt$$
, for all $x,y \in D$.

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 65F15, 47H17, 49D15. Key words and phrases. Nonlinear equations, iterative methods, nondiscrete mathematical induction, semi-local convergence.

Received by the editors on September 28, 2004.