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EXACT SOLUTION OF A SIMPLE HYPERSINGULAR
INTEGRAL EQUATION

P.A. MARTIN

ABSTRACT. We obtain the general solution to the simplest
one-dimensional hypersingular integral equation; the integral
is a Hadamard finite-part integral over a finite interval. We
use elementary methods, relating the integral equation to a
singular integral equation with a known solution. Despite
this, our formula appears to be new.

1. Introduction. We consider the hypersingular integral equation

(1.1) Hf ≡ 1
π

×
∫ 1

−1

f(t)
(x − t)2

dt = v(x), −1 < x < 1.

Here, v(x) is a known function and f(x) is to be determined. The
integral must be interpreted as a Hadamard finite-part integral, defined
by
(1.2)

×
∫ 1

−1

f(t)
(x − t)2

dt = lim
ε→0

{∫ x−ε

−1

f(t)
(x − t)2

dt +
∫ 1

x+ε

f(t)
(x − t)2

dt − 2f(x)
ε

}

where |x| < 1 and f is required to have a Hölder-continuous derivative,
f ∈ C1,α(−1, 1). The finite-part integral (1.2) is related to a Cauchy
principal-value integral by

(1.3) ×
∫ 1

−1

f(t)
(x − t)2

dt = − d

dx
−
∫ 1

−1

f(t)
x − t

dt,

provided that f ∈ C1,α; indeed, (1.3) is sometimes taken as the
definition of a finite-part integral. Further properties of finite-part
integrals and numerous references to the related literature can be found
in [6, 7].

In this short paper, we give the general solution of (1.1) for v in a
suitably restricted class of functions. This formula seems to be new,
and is obtained by exploiting (1.3).
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