AN ABSTRACT GRONWALL LEMMA AND APPLICATIONS TO GLOBAL EXISTENCE RESULTS
 FOR FUNCTIONAL DIFFERENTIAL AND INTEGRAL EQUATIONS OF FRACTIONAL ORDER

HUSSEIN A.H. SALEM AND MARTIN VÄTH

1. Introduction. The aim of this paper is two-fold. On the one hand, we prove an abstract generalization of a Gronwall lemma which gives a priori estimates for various (functional) differential and integral equations, of Volterra type, under a linear growth condition on the nonlinearity. We believe that this result is of independent interest and discuss it in a rather general setting. On the other hand, we apply a simple special case of this abstract result to obtain the existence of global solutions of the functional differential equation of fractional type

$$
\begin{array}{r}
D^{\alpha} x(t)=f\left(t, x\left(t-c_{1}\right), \ldots, x\left(t-c_{n}\right), D^{\alpha_{1}} x\left(t-a_{1}\right), \ldots, D^{\alpha_{k}} x\left(t-a_{k}\right),\right. \tag{1}\\
\left.I^{\beta_{1}} x\left(t-b_{1}\right), \ldots, I^{\beta_{m}} x\left(t-b_{m}\right)\right)
\end{array}
$$

under a linear growth condition on f. Here, $a_{j}, b_{j}, c_{j} \geq 0$, and $\alpha>$ $\alpha_{j}>0$ denote the, not necessarily integer, order of the corresponding (either Riemann-Liouville or Caputo) differential operators while $\beta_{j}>$ 0 denote the, not necessarily integer, order of the (Abel) integral operators. We also consider inclusion problems of the type (1).

For $n=m=0$, i.e., if the righthand side depends only on $\left(t, D^{\alpha_{1}} x(t-\right.$ $\left.\left.a_{1}\right), \ldots, D^{\alpha_{k}} x\left(t-a_{k}\right)\right)$, equation (1) has provoked some interest in the literature $[\mathbf{1}, \mathbf{2}, \mathbf{7}, \mathbf{9}-\mathbf{1 2}, \mathbf{1 4}, \mathbf{2 5}]$. In comparison with the existence results in these references, our assumptions are more natural. In contrast to these references, we only require that f has a linear growth and need not assume that this linear growth is sufficiently small. Of course, we can do this only because we obtain the required a priori estimate for the solution by means of our Gronwall lemma. We also drop the requirement that f is real-valued and consider the general

[^0]
[^0]: This paper was written in the framework of a Heisenberg Fellowship of the second author (Az. VA 206/1-1). Financial support by the DFG is gratefully acknowledged. Received by the editors on June 12, 2004.

 Copyright © 2004 Rocky Mountain Mathematics Consortium

