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THE NUMBER OF MINIMAL COMPONENTS AND
HOMOLOGICALLY INDEPENDENT COMPACT LEAVES
OF A WEAKLY GENERIC MORSE FORM
ON A CLOSED SURFACE

I. GELBUKH

ABSTRACT. On a closed orientable surface Mg2 of genus
g, we consider the foliation of a weakly generic Morse form
w on M2 and show that for such forms c(w) + m(w) =
g — (1/2)k(w), where c¢(w) is the number of homologically
independent compact leaves of the foliation, m(w) is the
number of its minimal components, and k(w) is the total
number of singularities of w that are surrounded by a minimal
component. We also give lower bounds on m(w) in terms of
k(w) and the form rank rkw or the structure of ker [w], where
[w] is the integration map.

1. Introduction. Consider a closed connected orientable smooth
two-dimensional manifold M = M, 3 of genus g. Let w be a Morse form
on M, i.e., a closed 1-form with Morse singularities Singw, locally the
differential of a Morse function. This form defines a foliation F,, on
M \ Singw. A leaf v € F, is called compactifiable if v U Singw is
compact.

A Morse form is called generic if each of its non-compact compacti-
fiable leaves is compactified by a unique singularity [2, Definition 9.1].
The set of such forms is dense in any cohomology class [2, Lemma 9.2].
The term generic introduced in [2] is somewhat misleading because the
set of such forms is not open. We find it plausible that such forms are
the “majority” of Morse forms and thus their properties are in a sense
“typical,” though we are not aware of any proof of this.

Our results hold for a wider class of forms, which we call weakly
generic: the requirement for a leaf to be compactified by only one
singularity is only applied to the leaves not surrounded by minimal
components.
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