A CONSTRUCTIVE PROOF OF THE BISHOP-PHELPS-BOLLOBÁS THEOREM FOR THE SPACE $C(K)$

ANTONIA E. CARDWELL

Abstract

In 1961 Bishop and Phelps proved that every real Banach space is subreflexive; in other words, every continuous linear functional can be approximated by a normattaining functional of the same norm. In 1970, Bollobás refined the result to show that, if f is a norm one functional that "almost" attains its norm at a point x, then f can be approximated by a norm attaining norm one functional that attains its norm at a point close to x. The original proof of the Bishop-Phelps result is an existence argument. We give a constructive proof of the Bishop-Phelps-Bollobás theorem for the real space $C(K)$.

1. Introduction. In 1961, Bishop and Phelps [1] proved their well-known theorem that every real Banach space is subreflexive; in other words, the set of support functionals for a closed, bounded, convex subset S of a real Banach space X is norm dense in X^{*}. In 1970, Bollobás [2] showed the following refinement of the Bishop-Phelps result:
Theorem 1.1. Denote by S and S^{\prime} the unit spheres in a real Banach space E and its dual space E^{\prime}, respectively. Suppose $x \in S, f \in S^{\prime}$ and $|f(x)-1| \leq \varepsilon^{2} / 2(0<\varepsilon<1 / 2)$. Then there exist $y \in S$ and $g \in S^{\prime}$ such that $g(y)=1,\|f-g\| \leq \varepsilon$ and $\|x-y\|<\varepsilon+\varepsilon^{2}$.

In other words, if f is a norm one functional that "almost" attains its norm at a point x, then f can be approximated by a norm attaining norm one functional that attains its norm at a point close to x.

The result that follows relates to Bollobás's formulation of the theorem. We begin by giving a constructive proof of the Bishop-PhelpsBollobás theorem in the real space $C(K)$.

2010 AMS Mathematics subject classification. Primary 46B20, 46B28.
Keywords and phrases. Bishop-Phelps theorem, norm-attaining functionals.
Received by the editors on September 29, 2010, and in revised form on February $8,2011$.

