ON (D_{12}) -**MODULES**

DERYA KESKIN TÜTÜNCÜ AND RACHID TRIBAK

ABSTRACT. It is known that a direct summand of a (D_{12}) module need not be a (D_{12}) -module. In this paper we establish some properties of *completely* (D_{12}) -modules (modules for which every direct summand is a (D_{12}) -module). After giving some examples of completely (D_{12}) -modules, it is proved that every finitely generated weakly supplemented completely (D_{12}) -module is a finite direct sum of local modules. We also prove that a direct sum of (D_{12}) -modules need not be a (D_{12}) module. Then we deal with some special cases of direct sums of (D_{12}) -modules. We conclude this work by characterizing some rings in terms of (D_{12}) -modules.

1. Introduction. Throughout this paper, we assume that all rings are associative with identity and all modules are unital right modules. Let R be a ring and M a right R-module. For undefined terms, see $[\mathbf{3}, \mathbf{9}, \mathbf{13}]$. We write E(M) for the injective hull of M. The notation $N \leq M$ means that N is a submodule of M. A submodule N of M is called a *small submodule* if, whenever N + L = M for some submodule L of M, we have L = M; and in this case we write $N \ll M$. A module M is said to be \oplus -supplemented if, for every submodule N of M, there exists a direct summand K of M such that M = N + K and $N \cap K$ is small in K. Keskin and Xue (in $[\mathbf{8}]$) investigated a proper generalization of \oplus -supplemented modules. The module M is said to have (D_{12}) (or is a (D_{12}) -module) if, for every submodule N of M, there exist a direct summand K of M and an epimorphism $\alpha : K \to M/N$ such that Ker α is small in K.

In this paper we continue the study of (D_{12}) -modules. In Section 2, we introduce the notion of (D_{13}) -modules. We prove that the class of (D_{12}) -modules strictly contains the class of (D_{13}) -modules. In Section 3, we will be concerned with direct summands of (D_{12}) -modules. A module M is said to be a *completely* (D_{12}) -module if every direct summand of M has (D_{12}) . It is known that a direct summand of a

²⁰¹⁰ AMS Mathematics subject classification. Primary 16D10, 16D99.

Keywords and phrases. (D_{12}) -modules, completely (D_{12}) -modules, local modules. Received by the editors on November 30, 2009, and in revised form on October 20, 2010.

 $^{{\}rm DOI:} 10.1216/{\rm RMJ-} 2013-43-4-1355 \quad {\rm Copyright} \\ \textcircled{O} 2013 \\ {\rm Rocky} \\ {\rm Mountain} \\ {\rm Mathematics} \\ {\rm Consortium} \\ {\rm Cons$