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ABSTRACT. In this paper we derive a formula for a non-
trivial factorization of an odd, composite integer N that has
been expressed in two different ways as mx2 + ny2. This
derivation is based on an approach that Euler used in a spe-
cial case in 1778. We also modify this formula to handle the
case when N is expressed in two different ways as mx2 −ny2.
This latter factorization, however, may sometimes be trivial.

1. Introduction. Among the classical factoring methods, there are
two that depend on first expressing the number N to be factored as
binary quadratic forms. The earliest such method (1643) is Fermat’s
method [2, page 357 (1)] in which an odd, nonsquare integer N is
expressed as

(1) N = x2 − y2 = (x − y) · (x+ y).

That such a representation always exists follows from the identity
N = [(N + 1)/2)]2 − [(N − 1)/2]2. This representation, however, only
proves existence, since it gives the trivial factorization N = 1 · N . It
remains then to determine the values of x for which (1) gives a nontrivial
factorization of a composite N :

Let N = a · b, where 1 < a <
√
N . Then, since x − y = a and

x + y = b, we see that x = (a + b)/2 = (a+ (N/a))/2. It follows that
the factorization in (1) is nontrivial only when

√
N < x < (N + 1)/2.

The second factoring method, which was initiated by Euler, is based
on a solution of the following problem:

Main factoring problem. Suppose an odd integer N > 1 is
expressed in two different ways as

(2) N = ma2 + nb2 = mc2 + nd2,
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