THE COMPLETION OF EULER'S FACTORING FORMULA

RICHARD BLECKSMITH, JOHN BRILLHART AND MICHAEL DECARO

Dedicated to William Blair, Chair of the Department of Mathematical Sciences at Northern Illinois University (1990-2010)

Abstract

In this paper we derive a formula for a nontrivial factorization of an odd, composite integer N that has been expressed in two different ways as $m x^{2}+n y^{2}$. This derivation is based on an approach that Euler used in a special case in 1778 . We also modify this formula to handle the case when N is expressed in two different ways as $m x^{2}-n y^{2}$. This latter factorization, however, may sometimes be trivial.

1. Introduction. Among the classical factoring methods, there are two that depend on first expressing the number N to be factored as binary quadratic forms. The earliest such method (1643) is Fermat's method [2, page 357 (1)] in which an odd, nonsquare integer N is expressed as

$$
\begin{equation*}
N=x^{2}-y^{2}=(x-y) \cdot(x+y) \tag{1}
\end{equation*}
$$

That such a representation always exists follows from the identity $N=[(N+1) / 2)]^{2}-[(N-1) / 2]^{2}$. This representation, however, only proves existence, since it gives the trivial factorization $N=1 \cdot N$. It remains then to determine the values of x for which (1) gives a nontrivial factorization of a composite N :

Let $N=a \cdot b$, where $1<a<\sqrt{N}$. Then, since $x-y=a$ and $x+y=b$, we see that $x=(a+b) / 2=(a+(N / a)) / 2$. It follows that the factorization in (1) is nontrivial only when $\sqrt{N}<x<(N+1) / 2$.

The second factoring method, which was initiated by Euler, is based on a solution of the following problem:

Main factoring problem. Suppose an odd integer $N>1$ is expressed in two different ways as

$$
\begin{equation*}
N=m a^{2}+n b^{2}=m c^{2}+n d^{2} \tag{2}
\end{equation*}
$$

[^0]
[^0]: Received by the editors on October 26, 2010.
 DOI:10.1216/RMJ-2013-43-3-755 Copyright © 2013 Rocky Mountain Mathematics Consortium

