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ARGUMENTS OF ZEROS OF
HIGHLY LOG CONCAVE POLYNOMIALS

DAVID HANDELMAN

ABSTRACT. For a real polynomial p =
∑n

i=0
cix

i with no

negative coefficients and n ≥ 6, let β(p) = infn−1
i=1 c2i /ci+1ci−1

(so β(p) ≥ 1 entails that p is log concave). If β(p) > 1.45 · · · ,
then all roots of p are in the left half plane and, moreover,
there is a function β0(θ) (for π/2 ≤ θ ≤ π) such that
β ≥ β0(θ) entails all roots of p to have arguments in the
sector | arg z| ≥ θ with the smallest possible θ; we determine
exactly what this function (and its inverse) is (it turns out
to be piecewise smooth, and quite tractible). This is a one-
parameter extension of the Hutchinson-Kurtz theorem (which
asserts that β ≥ 4 entails all roots are real).

1. Introduction. As an outgrowth of a question concerning a class
of analytic functions, we give criteria for all roots of real polynomials
to lie in a sector of the form {z ∈ C | | arg z| > θ}, at least for
π ≥ θ ≥ π/2 and asymptotically as θ → 0. The criteria depend only
upon log concavity of the coefficients.

Specifically, if f =
∑N

i=0 cix
i (of degree N ≥ 6) is a polynomial with

positive coefficients, let β := infN−1
i=1 c

2
i /ci+1ci−1 and assume β > 1.

Then there is a θ > 0 such that for all roots, z, of f , | arg z| > θ (where
arg is the principal value, i.e., arg takes on values in (−π, π]). The
function β �→ θ is determined exactly for π/2 ≤ θ ≤ π. For example, if
β = 1+

√
2, then all roots of f lie in the sector | arg z| > 3π/4, while, if

β = 2, then all roots lie in | arg z| > 2π/3, and moreover, these numbers
are sharp.

This is an extension of Kurtz’s theorem, which states that if the cj
are all positive and β > 4, then all roots are real. We provide minor
improvements on this result. This result goes back to Hutchinson [4].

Then we consider in Section 2 an old question [7] and [1, Section 4],
which was also attacked in [5, Theorem 4]. Form the entire function (or
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