ARGUMENTS OF ZEROS OF HIGHLY LOG CONCAVE POLYNOMIALS

DAVID HANDELMAN

Abstract

For a real polynomial $p=\sum_{i=0}^{n} c_{i} x^{i}$ with no negative coefficients and $n \geq 6$, let $\beta(p)=\inf _{i=1}^{n-1} c_{i}^{2} / c_{i+1} c_{i-1}$ (so $\beta(p) \geq 1$ entails that p is \log concave). If $\beta(p)>1.45 \cdots$, then all roots of p are in the left half plane and, moreover, there is a function $\beta_{0}(\theta)$ (for $\pi / 2 \leq \theta \leq \pi$) such that $\beta \geq \beta_{0}(\theta)$ entails all roots of p to have arguments in the sector $|\arg z| \geq \theta$ with the smallest possible θ; we determine exactly what this function (and its inverse) is (it turns out to be piecewise smooth, and quite tractible). This is a oneparameter extension of the Hutchinson-Kurtz theorem (which asserts that $\beta \geq 4$ entails all roots are real).

1. Introduction. As an outgrowth of a question concerning a class of analytic functions, we give criteria for all roots of real polynomials to lie in a sector of the form $\{z \in \mathbf{C}||\arg z|>\theta\}$, at least for $\pi \geq \theta \geq \pi / 2$ and asymptotically as $\theta \rightarrow 0$. The criteria depend only upon \log concavity of the coefficients.

Specifically, if $f=\sum_{i=0}^{N} c_{i} x^{i}$ (of degree $N \geq 6$) is a polynomial with positive coefficients, let $\beta:=\inf _{i=1}^{N-1} c_{i}^{2} / c_{i+1} c_{i-1}$ and assume $\beta>1$. Then there is a $\theta>0$ such that for all roots, z, of $f,|\arg z|>\theta$ (where \arg is the principal value, i.e., arg takes on values in $(-\pi, \pi])$. The function $\beta \mapsto \theta$ is determined exactly for $\pi / 2 \leq \theta \leq \pi$. For example, if $\beta=1+\sqrt{2}$, then all roots of f lie in the sector $|\arg z|>3 \pi / 4$, while, if $\beta=2$, then all roots lie in $|\arg z|>2 \pi / 3$, and moreover, these numbers are sharp.

This is an extension of Kurtz's theorem, which states that if the c_{j} are all positive and $\beta>4$, then all roots are real. We provide minor improvements on this result. This result goes back to Hutchinson [4].

Then we consider in Section 2 an old question [7] and [1, Section 4], which was also attacked in [5, Theorem 4]. Form the entire function (or

[^0]
[^0]: 2010 AMS Mathematics subject classification. Primary 26C10, 30C15, 05 E99.
 The author was supported by an NSERC Discovery grant.
 Received by the editors on April 10, 2010.

