ON THE CARDINALITY OF STAR OPERATIONS ON A PSEUDO-VALUATION DOMAIN

MI HEE PARK

ABSTRACT. Let R be a pseudo-valuation domain with residue field k, and let V be the associated valuation domain of R with residue field L. The purpose of this article is to compute the cardinality |Star (R)| (respectively |SStar (R)|) of star (respectively semistar) operations on R. It depends upon the relation between the residue fields of R and V. We will show that $|Star (R)| < \infty$ if and only if dim_k L = 1, 2, 3, or L is a finite field, and that $|SStar (R)| < \infty$ if and only if $|Star (R)| < \infty$ and dim $R < \infty$.

1. Introduction. Let R be an integral domain with quotient field K, $\mathcal{F}(R)$ the set of nonzero fractional ideals of R, and $\overline{\mathcal{F}}(R)$ the set of nonzero R-submodules of K.

A mapping $* : \mathcal{F}(R) \to \mathcal{F}(R), I \mapsto I^*$, is called a *star-operation* on R if the following conditions hold for all $a \in K \setminus \{0\}$ and $I, J \in \mathcal{F}(R)$:

(i)
$$(a)^* = (a); (aI)^* = aI^*;$$

(ii)
$$I \subseteq I^*$$
; if $I \subseteq J$, then $I^* \subseteq J^*$; and

(iii)
$$(I^*)^* = I^*$$
.

A fractional ideal $I \in \mathcal{F}(R)$ is called a *-ideal if $I^* = I$.

The best known examples of a star-operation are the *d*-operation and the *v*-operation. The *d*-operation is the identity mapping $I \mapsto I_d = I$ and the *v*-operation is defined by $I \mapsto I_v = (I^{-1})^{-1} = \bigcap \{Rx \mid x \in K, I \subseteq Rx\}$. A *v*-ideal is often called a divisorial ideal. It is easy to see that, for each star-operation * on R and each fractional ideal $I \in \mathcal{F}(R)$, $I \subseteq I^* \subseteq I_v$. As an immediate consequence, if d = v, i.e., each nonzero

²⁰¹⁰ AMS Mathematics subject classification. Primary 13A15, 13A18.

Keywords and phrases. Star operation, semistar operation, pseudo-valuation domain.

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0021883).

Received by the editors on January 22, 2010, and in revised form on March 2, 2010.

 $^{{\}rm DOI:} 10.1216/{\rm RMJ-2012-42-6-1939} \quad {\rm Copyright} \\ \textcircled{O} 2012 \\ {\rm Rocky} \\ {\rm Mountain} \\ {\rm Mathematics} \\ {\rm Consortium} \\ {\rm Conso$