ASYMPTOTIC ANALYSIS OF A FAMILY OF POLYNOMIALS ASSOCIATED WITH THE INVERSE ERROR FUNCTION

DIEGO DOMINICI AND CHARLES KNESSL

Abstract

We analyze the sequence of polynomials defined by the differential-difference equation $P_{n+1}(x)=$ $P_{n}^{\prime}(x)+x(n+1) P_{n}(x)$ asymptotically as $n \rightarrow \infty$. The polynomials $P_{n}(x)$ arise in the computation of higher derivatives of the inverse error function inverf (x). We use singularity analysis and discrete versions of the WKB and ray methods and give numerical results showing the accuracy of our formulas.

1. Introduction. The error function $\operatorname{erf}(x)$ is defined by [1]

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp \left(-t^{2}\right) d t \tag{1}
\end{equation*}
$$

and its inverse $\operatorname{inverf}(x)$, which we will denote by $\Im(x)$, satisfies $\Im[\operatorname{erf}(x)]=\operatorname{erf}[\Im(x)]=x$. The function $\mathfrak{I}(x)$ appears in several problems of applied mathematics and mathematical physics [8].
In [4] we considered the function

$$
\begin{equation*}
N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t \tag{2}
\end{equation*}
$$

and its inverse $S(x)$, satisfying

$$
S[N(x)]=N[S(x)]=x
$$

[^0]
[^0]: 2010 AMS Mathematics subject classification. Primary 34E20, Secondary 33E30.
 Keywords and phrases. Inverse error function, differential-difference equations, singularity analysis, discrete WKB method.

 The work of the first author was supported by a Humboldt Research Fellowship for Experienced Researchers from the Alexander von Humboldt Foundation. The work of the second author was supported by NSF grant DMS 05-03745 and NSA grants H 98230-08-1-0102 and H 98230-11-1-0184.

 Received by the editors on November 13, 2008, and in revised form on October 12, 2009.

