ON ANNIHILATOR IDEALS IN MATRIX NEAR-RINGS

ANTHONY M. MATLALA

ABSTRACT. This paper focuses on how the structure of a faithful R-group of a near-ring R determines the ideal structure of the matrix near-ring, $\mathbf{M}_n(R)$, associated with R. Intersections of annihilating ideals of monogenic R-groups or $\mathbf{M}_n(R)$ -groups are referred to as Annihilator ideals. However, it is known that there exist some non-monogenic R-groups, say Δ , for which Δ^n is monogenic as an $\mathbf{M}_n(R)$ -group. Taking cognizance of these non-monogenic R-groups helps us draw conclusions on relationships between some Jacobson ν -radicals of R and those of $\mathbf{M}_n(R)$, $\nu=0,s,2$. In particular, and contrary to Meldrum-Meyer's conjecture in [9], it is herein shown that $(J_0(R))^+ \not\subset J_0(\mathbf{M}_n(R))$.

1. Introduction. Relationships between ideals of a near-ring R and ideals of its associated matrix near-ring $\mathbf{M}_n(R)$ has been the subject of a number of research papers on near-rings. For instance, the Jacobson ν -radicals are shown to be related as $(J_{\nu}(R))^* \supseteq J_{\nu}(\mathbf{M}_n(R))$ where $\nu = 0, s, 2$, see [3, 13]. A similar relationship was also proved in [5] for the socle ideals. That is, $(Soi(R))^* \supseteq Soi(\mathbf{M}_n(R))$, where R satisfies the DCCL. In order to draw any conclusion on the relationship between $(J_0(R))^+$ and $J_0(\mathbf{M}_n(R))$ one needs to pay attention to nonmonogenic R-groups, say Δ , such that Δ^n is a monogenic $\mathbf{M}_n(R)$ group. These non-monogenic R-groups are identified and referred to as R-groups of ν_n -form, according to the type- ν of Δ^n as an $\mathbf{M}_n(R)$ group, $\nu = 0, s, \mathcal{K}$. R-groups of ν_n -form are used to construct an example of a near-ring R such that $(J_0(R))^+ \not\subset J_0(\mathbf{M}_n(R))$. This is despite the fact that $(J_s(R))^+ \subseteq J_s(\mathbf{M}_n(R))$ for a near-ring R such that $\mathbf{M}_n(R)$ satisfies the DCCL, see [4]. It is because of the R-groups of ν_n -form that we could construct a near-ring, R, such that $J_0(\mathbf{M}_n(R)) \neq$ $J_s(\mathbf{M}_n(R)) \neq J_2(\mathbf{M}_n(R))$ while $J_0(R) = J_s(R) = J_2(R)$.

Throughout this paper R denotes a right-distributive near-ring with multiplicative identity. If the near-ring R satisfies the descending

²⁰¹⁰ AMS Mathematics subject classification. Primary 16Y30. Keywords and phrases. Near-ring, zero symmetric, ideals, matrix near-ring, R-groups, R-subgroups, monogenic, Jacobson \(\nu\)-radical, R-kernel, socle ideal. Received by the editors on November 1, 2008, and in revised form on March 2, 2009.