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CHARACTERIZING MINIMAL RING EXTENSIONS

PAUL-JEAN CAHEN, DAVID E. DOBBS AND THOMAS G. LUCAS

ABSTRACT. Given a pair of commutative rings R C T’
with the same identity, 7" is a minimal ring extension of R
if there are no rings properly between R and 7. Such an
extension is said to be closed if R is integrally closed in T7
otherwise, T is integral over R and the extension is a minimal
integral extension. An extension R C T is a closed minimal
extension if and only if there is a maximal ideal M of R such
that (R, M) is a rank 1 valuation pair of T' (equivalently, for
each t € T\R, M is the radical of (R :g t) and there is an
element m € M such that mt € R\M). Also, for a pair of rings
R C T and element u € T\R, the pair R C Rlu] is a closed
minimal extension if and only if for each ¢t € R[u]\R, there are

elements ¢,d € 1/ (R :g u) such that ct+d = 1. For a minimal
integral extension R C T, the conductor M = (R : T) is
a maximal ideal of R. In this case, if M has no nonzero
annihilators in 7', then there is an R-algebra isomorphism
between 7" and a ring extension S of R in the complete ring
of quotients of R. Moreover, M is regular if and only if S is
in the total quotient ring of R, and M is semiregular but not
regular if and only if S is in the ring of finite fractions over R
but not in the total quotient ring of R.

1. Introduction. All rings and algebras considered below are
commutative with identity and all ring/algebra homomorphisms and
subrings are unital. The set of prime (respectively, maximal) ideals of
R is denoted by Spec (R) (respectively, Max (R)). A regular element is
one that is not a zero divisor, and a regular ideal is one that contains
a regular element. An ideal that has no nonzero annihilators is said
to be dense and an ideal that contains a finitely generated dense ideal
is semiregular. For a pair of rings R C T, an element b of R may be
regular in R but a zero divisor in 7. Similarly, an ideal of R may be
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