SUM-PRODUCT PHENOMENON IN FINITE FIELDS NOT OF PRIME ORDER

CHUN-YEN SHEN

ABSTRACT. Let $F=F_{p^n}$ be a finite field and A a subset of F so that for any $A'\subset A$ with $|A'|\geq |A|^{15/16}$ and for any $G\subset F$ a subfield (not necessarily proper) and for any elements $c,d\in F$ if

$$A' \subset cG + d$$
,

then

$$|A'| \le |G|^{1/2}.$$

Then it must be that

$$\max(|A + A|, |F(A, A)|) \gtrsim |A|^{17/16}$$

where $F: F_p \times F_p \to F_p$ is a function defined by F(x,y) = x(g(x)+cy), where $c \in F_p^*$ and $g: F_p \to F_p$ is any function. The case g=0 and c=1 improves the exponent in $[\mathbf{6}]$ from 20/19 to 17/16.

0. Introduction. Let A be a subset of $F = F_{p^n}$, the field of p^n elements with p prime.

We let

$$A + A = \{a + b : a \in A, b \in A\},\$$

and

$$AA = \{ab : a \in A, b \in A\}.$$

After breakthrough work by Bourgain, Katz and Tao [2], with subsequent refinement by Bourgain, Glibichuk and Konyagin [1], much work has been done to give a quantitative lower bound on $\max(|A+A|, |AA|)$ for the case n=1 (see e.g., [4–9]). It is known that the problem is more complicated in fields not of prime order due to the presence of non-trivial subfields or their dilates. Recently, Tao [8] obtained a rigorous formulation of the sum-product phenomenon in arbitrary rings, and

²⁰¹⁰ AMS Mathematics subject classification. Primary 11B75, Secondary 12E20. Keywords and phrases. Sum-product estimates, expanding maps. Received by the editors on September 24, 2008.