ON A-CONVEX NORMS ON COMMUTATIVE ALGEBRAS

JORMA ARHIPPAINEN AND JUKKA KAUPPI

ABSTRACT. We study such norms on commutative algebras for which the multiplication is separately continuous. By comparing a given norm $\| \|$ to its operator semi-norm $\| \|_{\text{op}}$, we get two constants $m(\| \|)$ (the modulus of m-convexity) and $r(\| \|)$ (the modulus of regularity). We study how these constants are connected to the m-convexity and to the A-convexity of $\| \|$. In particular, we give a concept of an irregular norm and study some properties of such norms. Further, we will give a generalization of the famous theorem of Gelfand, which states that a complete A-convex norm $\| \|$ is always equivalent to some m-convex norm $\| \|$, and if the algebra has a unit element e, this norm can be chosen so that |e| = 1.

1. Introduction. In this paper, A will denote a commutative algebra over the field ${\bf C}$ of complex numbers. If A has a unit element, it will be denoted by e. Let $\|\ \|$ be a usual linear-space norm on A. The topology on A defined by $\|\ \|$ will be denoted by $T(\|\ \|)$. It is said that the multiplication on A is separately continuous with respect to the norm $\|\ \|$, if the mapping $(x,y)\mapsto xy$ from $A\times A$ into A is continuous with respect to one component, when the other one is fixed $(A\times A$ is provided with the usual product topology induced by $T(\|\ \|)$. Moreover, the multiplication on A is said to be jointly continuous with respect to the norm $\|\ \|$, if the mapping $(x,y)\mapsto xy$ from $A\times A$ into A is continuous with respect to both components at the same time. The norm $\|\ \|$ is said to be absorbingly convex (shortly A-convex) on A, if for each x in A there exists a constant $M_x\geq 0$ (depending on x) such that

$$||xy|| \le M_x ||y||$$
 for all y in A .

Moreover, the norm $\| \|$ is said to be submultiplicative or multiplicatively convex (shortly m-convex) on A, if

$$||xy|| \le ||x|| ||y||$$
 for all x and y in A .

²⁰¹⁰ AMS Mathematics subject classification. Primary 46H05, 46J05.

Keywords and phrases. Normed algebras, A-convex algebras.

Received by the editors on June 5, 2007, and in revised form on October 29, 2007.