THE CENTRAL LIMIT QUESTION UNDER ρ-MIXING

RICHARD C. BRADLEY

ABSTRACT. An earlier construction of a (non-trivial) strictly stationary ρ -mixing random sequence that fails to satisfy the central limit theorem, is refined here in order to try to have the fastest possible "mixing rate" for ρ -mixing, depending on the "moment properties" of the r.v.'s. In particular, the examples here show that when only finite second moments are assumed, for the central limit theorem the mixing rate $\sum \rho(2^n) < \infty$ used by Ibragimov is essentially as slow as permissible.

1. Introduction. First we define some notation. Log denotes the natural logarithm, and $\log^+x := \max\{0, \log x\}$. The indicator function of a set S is denoted by I_S . The notation $a \ll b$ means a = O(b). The notation $a \sim b$ means $\lim a/b = 1$. The greatest integer $\leq x$ is denoted by [x]. A sequence $(a_n, n = 1, 2, ...)$ of positive numbers is said to be "slowly varying" as $n \to \infty$ if $\lim_{n\to\infty} [\sup_{n\leq m\leq 2n} a_m]/[\inf_{n\leq m\leq 2n} a_m] = 1$. When a subscript itself is of the form a_n , it will be written as a(n). The notation $\mathscr{L}_2(\cdot)$ refers only to real-valued random variables (instead of general complex-valued ones).

Suppose $X = (X_k, k \in \mathbb{Z})$ is a strictly stationary sequence of real-valued random variables on a probability space (Ω, \mathcal{F}, P) . For $-\infty \leq J \leq L \leq \infty$ let \mathcal{F}_J^L denote the σ -field of events generated by the random variables $(X_k, J \leq k \leq L)$. For any two σ -fields \mathcal{A} and $\mathcal{B} \subset \mathcal{F}$, define the "maximal correlation" [8, 12] by

$$\rho(\mathscr{A}, \mathscr{B}) \coloneqq \sup |\operatorname{Corr}(f, g)| \qquad f \in \mathscr{L}_2(\mathscr{A}), g \in \mathscr{L}_2(\mathscr{B}).$$

For each n = 1, 2, 3, ... define the dependence coefficient $\rho(n) := \rho(\mathscr{F}_{-\infty}^0, \mathscr{F}_n^\infty)$. By our assumption of stationarity, $\rho(n) = \rho(\mathscr{F}_{-\infty}^J, \mathscr{F}_{J+n}^\infty)$ $\forall J \in \mathbb{Z}$. Also, obviously the sequence $\rho(n), n = 1, 2, ...$ is non-increasing as *n* increases. The stationary random sequence $X := (X_k)$ is said to be " ρ -mixing" [18] if $\rho(n) \to 0$ as $n \to \infty$.

Copyright © 1987 Rocky Mountain Mathematics Consortium

AMS 1980 subject classifications: Primary 60G10, Secondary 60F05.

Key words and phrases: strictly stationary, maximal correlation, ρ -mixing, central limit theorem.

This work was partially supported by NSF grant DMS 84-01021.

Received by the editors on August 21, 1984.