DERIVATIONS FROM SUBALGEBRAS OF *C**-ALGEBRAS WITH CONTINUOUS TRACE

ALDO J. LAZAR, SZE-KAI TSUI, STEVE WRIGHT

1. Introduction. Let A be a C^* -algebra, M(A) its multiplier algebra, B a C^* -subalgebra of A. Suppose $\delta: B \to A$ is a derivation of B into A, i.e., a linear map for which $\delta(ab) = a\delta(b) + \delta(a)b$, for all $a, b \in B$. Derivations of this type are most easily obtained by choosing an element m of M(A) and setting $\delta(b) = mb - bm$, $b \in B$. Such derivations are said to be inner in M(A), with generator m. In this paper, we begin the investigation of C^* -algebras A with the following property: for each C^* -subalgebra B of A and each derivation $\delta: B \to A$, there is an element $m \in M(A)$ for which $\delta(b) = mb - bm$, for all $b \in B$. We will say that a C^* -algebra with this property is hereditarily cohomologically trivial (HCT for short).

The HCT C*-algebras are of interest for a number of reasons. The problem of studying them was first raised (without the terminology just introduced) by Kaplansky on p. 7 of [11], who was motivated by Sakai's famous theorem [16] that all derivations of simple, unital C^* -algebras are inner, and the fact that any derivation of a semisimple subalgebra into a central simple algebra can be extended to an inner derivations of the larger algebra. E. Christensen in [4, 5] has attacked the difficult and as yet still unanswered question of whether B(H), the algebra of all bounded operators on a Hilbert space H, is HCT, and has shown [4, Section 5] that all finite von Neumann algebras have this property. Akemann and Johnson have pointed out in the introduction to [2] the importance of investigating those pairs (B, A) of C*-algebras A and C*-subalgebras B of A for which every derivation of B into A is inner in M(A); since the HCT C*-algebras have this property for all C*-subalgebras, a knowledge of them will be very useful in coming to grips with this more general problem of Akemann and Johnson (indeed, in the remarks which end [13], the present authors indicate at least one instance in which such a payoff actually occurs). Finally, J. Cuntz (private communication) has pointed out that knowledge of the structure of derivations of a C*-subalgebra B into a C^* -algebra A would be useful in the study of the noncommutative K-theory of Kasparov [12]. In particular, the very nice

Received by the editors on September 18, 1984.

Copyright © 1987 Rocky Mountain Mathematics Consortium