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SPECTRUM OF NONPOSITIVE CONTRACTIONS ON C(X). 

ROBERT E. ATALLA 

ABSTRACT. Known results in the spectral theory of Markov oper­
ators are shown to have analogues which are valid for general con­
tractions. For instance we discuss the group structure of the uni­
modular eigenfunctions, and the representation of an irreducible 
operator as a rotation of a compact group, followed by a multi­
plication. 

1. Introduction. Throughout, Xm\\ be a compact T2 space and C(X) the 
continuous scalar valued functions on X9 where the scalar field may be 
either the real or the complex numbers. T will be a contraction on C(X)9 

i.e., a linear operator will ||r|| ^ 1. T is called a Markov operator in 
case r ^ 0 and TÌ = 1. In areas such as ergodic theory and spectral 
theory, the theory of Markov operators is much more developed than that 
of general contractions. The reason is that positivity is a great convenience 
when measures come into play. However there exists a device which en­
ables us to bring positivity into the picture even when T is nonpositive. 
Let F(T*) = {m in C(X)*: T*m = m}, let m be an extreme point of the 
unit ball F^T*), and let <pm be the Radon-Nikodym derivative dm\d\m\. 
This was introduced in [3] for the special case where T2 = T, and used in 
[1] to transfer results from the ergodic theory of Markov operators to 
general contractions. In this paper we make use of the functions <pm to 
prove results in spectral theory already well known for Markov operators 
[4, 6, 7, 8]. For instance we show that the unimodular eigenfunctions form 
a group under an operation a little more complicated than pointwise mul­
tiplication, and that if T is irreducible and the unimodular eigenfunctions 
"strongly separate" X, then Tis essentially a rotation of a compact group, 
followed by a multiplication. 

It should be noted that in contrast to the Markov case it is possible 
that F(T*) = {0}. On the other hand it is easy to manufacture nontrivial 
examples : let Äbea Markov operator, <j) a unimodular continuous func-
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