HOVANSKY' THEOREM AND COMPLEXITY THEORY.

JEAN-JACQUES RISLER.

Dedicated to the memory of Gus Efroymson

The additive complexity of $P \in R[X_1, ..., X_n]$ is related to the set of zeros of P in \mathbb{R}^n .

1. Hovansky's theorems. (Cf. [2], [3]). The results of Hovansky are in the spirit of Bezout's theorem, but in the real case. Let us recall Descartes's lemma.

LEMMA 1.1. If $P = a_0 + a_1X + \cdots + a_nX^n \in R[X]$, the number of positive real roots of P is smaller than the number of changes of signs in the sequence a_0, \ldots, a_n .

PROOF. This is very simple by induction on *n*, using Rolle's theorem.

COROLLARY 1.2. The number of positive real roots of P is smaller than the number of non-zero monomials in P.

The result of Hovansky is a generalisation of this-corollary.

THEOREM 1.3. Let $F_1, \ldots, F_n \in R[X_1, \ldots, X_n, Y_1, \ldots, Y_k]$, deg. $F_i = m_i$, where $Y_i = e^{\langle a^i, X \rangle} (1 \leq i \leq k)$ with $\langle a^i, X \rangle = \sum_{j=1}^n a_j^i X_j$, $a_j^i \in R$. Then the number of non-degenerate roots in R^n of the system $\{F_i(X, Y(X)) = 0, 1 \leq i \leq n\}$ (with $X = (X_1, \ldots, X_n)$) is $\leq 2^{(1/2)k(k-1)}(1 + \sum m_i)^k \prod m_i$.

The proof is by induction on k, beginning with the classical Bezout theorem, and using an old method of Liouville to "kill" the exponentials, and a variant of Rolle's theorem.

COROLLARY 1.4. Let $P_1, \ldots, P_n \in R[X_1, \ldots, X_n]$, the total number of monomials in (P_1, \ldots, P_n) being k; then the number of non-degenerate solutions in R_+^n of the system $P_1 = \cdots = P_n = 0$, is $\leq (1 + n)^k 2^{k(k-1)/2}$.

PROOF. Put $X_i = e^{Y_i}$, and use Theorem 1.3.

REMARKS 1.5. a) Probably the bound in the corollary can be greatly improved.

b) Theorem 1.3 can be generalised to a large set of analytic functions.

2. Additive complexity of polynomials in one variable over R. The additive

Copyright © 1984 Rocky Mountain Mathematics Consortium

851