# HOVANSKY' THEOREM AND COMPLEXITY THEORY. 

JEAN-JACQUES RISLER.

Dedicated to the memory of Gus Efroymson
The additive complexity of $P \in R\left[X_{1}, \ldots, X_{n}\right]$ is related to the set of zeros of $P$ in $R^{n}$.

1. Hovansky's theorems. (Cf. [2], [3]). The results of Hovansky are in the spirit of Bezout's theorem, but in the real case. Let us recall Descartes's lemma.

Lemma 1.1. If $P=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in R[X]$, the number of positive real roots of $P$ is smaller than the number of changes of signs in the sequence $a_{0}, \ldots, a_{n}$.

Proof. This is very simple by induction on $n$, using Rolle's theorem.
Corollary 1.2. The number of positive real roots of $P$ is smaller than the number of non-zero monomials in $P$.

The result of Hovansky is a generalisation of this-corollary.
Theorem 1.3. Let $F_{1}, \ldots, F_{n} \in R\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{k}\right]$, deg. $F_{i}=m_{i}$, where $Y_{i}=e^{\left\langle a^{i}, X\right\rangle}(1 \leqq i \leqq k)$ with $\left\langle a^{i}, X\right\rangle=\sum_{j=1}^{n} a_{j}^{i} X_{j}, a_{j}^{i} \in R$. Then the number of non-degenerate roots in $R^{n}$ of the system $\left\{F_{i}(X, Y(X))=0\right.$, $1 \leqq i \leqq n\}\left(\right.$ with $\left.X=\left(X_{1}, \ldots, X_{n}\right)\right)$ is $\leqq 2^{(1 / 2) k(k-1)}\left(1+\sum m_{i}\right)^{k} \Pi m_{i}$.

The proof is by induction on $k$, beginning with the classical Bezout theorem, and using an old method of Liouville to "kill" the exponentials, and a variant of Rolle's theorem.

Corollary 1.4. Let $P_{1}, \ldots, P_{n} \in R\left[X_{1}, \ldots, X_{n}\right]$, the total number of monomials in $\left(P_{1}, \ldots, P_{n}\right)$ being $k$; then the number of non-degenerate solutions in $R_{+}^{n}$ of the system $P_{1}=\cdots=P_{n}=0$, is $\leqq(1+n)^{k} 2^{k(k-1) / 2}$.

Proof. Put $X_{i}=e^{Y_{i}}$, and use Theorem 1.3.
Remarks 1.5. a) Probably the bound in the corollary can be greatly improved.
b) Theorem 1.3 can be generalised to a large set of analytic functions.
2. Additive complexity of polynomials in one variable over $R$. The additive

