THE CENTRALIZER OF THE LAGUERRE POLYNOMIAL SET

N.A. AL-SALAM AND W.A. AL-SALAM

1. Introduction. By a polynomial set (p.s.) we mean a sequence $P = \{P_0(x), P_1(x), P_2(x), \dots\}$ of polynomials in which $P_0(x) \neq 0$ and $P_n(x)$ is of exact degree n. In this work we shall be interested in sets (or classes) whose elements are themselves polynomial sets. This point of view is not new. Appell [2] considered the class $\mathscr A$ of Appell polynomials $A = \{A_n(x)\}$ whose generating function is

(1.1)
$$A(t)e^{xt} = \sum_{n=0}^{\infty} A_n(x) \frac{t^n}{n!}.$$

The Sheffer class \mathcal{S} [6] is the class of all p.s. $S = \{S_n(x)\}$ for which

(1.2)
$$A(t)e^{xH(t)} = \sum_{n=0}^{\infty} S_n(x) \frac{t^n}{n!}.$$

Similarly the Boas-Buck class @ consists of all p.s. B for which [3]

(1.3)
$$A(t)\Phi(xH(t)) = \sum_{n=0}^{\infty} \phi_n B_n(x) t^n,$$

where in these formulas A(t), H(t) and $\Phi(t)$ are formal power series such that $A(0) \neq 0$, H(0) = 0 but $H'(0) \neq 0$, and $\Phi(t) = \phi_0 + \phi_1 t + \phi_2 t^2 + \cdots$ with $\phi_k \neq 0$ for all $k \geq 0$. (1.1) is obtained when H(t) = t and $\Phi(t) = e^t$.

Many of the well known p.s. are included in one or more of the above classes. For example, the Hermite p.s. is in \mathscr{A} as well as in \mathscr{S} . The Laguerre p.s. $L^{(\alpha)}$ is in \mathscr{S} . Other examples are the Abel, the Meixner, the Bernoulli, and the Boole polynomial sets.

Appell [2], Sheffer [6] as well as Rota, Kahaner and Odlysko [5] (see also [4]) gave sets of polynomials (\mathscr{A} in [2], \mathscr{S} in [4], [5], [6]) an algebraic structure by defining multiplication in the following manner.

Let $P = \{P_n(x)\}$ and $Q = \{Q_n(x)\}$ be two elements of the set under consideration. Let, furthermore, $P_n(x) = \sum_{k=0}^n p_{nk} x^k$ and $Q_n(x) = \sum_{k=0}^n p_{nk} x^k$

Received by the editors on June 15, 1983.