PRODUCTS OF TWO ABELIAN SUBGROUPS

BERNHARD AMBERG

Every group $G=A B$, which is the product of two abelian subgroups A and B, is metabelian by a well-known result of Itô [4]. In this short note some further statements on the structure of such groups are given. For instance, the center, the $F C$-center, the hypercenter and the $F C$ hypercenter of G are 'factorized' as products of a subgroup of A and a subgroup of B (Theorem 2.2). The Fitting subgroup and the HirschPlotkin radical of G are in general not factorized in a corresponding way. However, some sufficient conditions are given, under which these important characteristic subgroups are factorized (Theorems 2.4 and 2.5). It is also shown that if G is not cyclic of prime order and if $A \neq G$ or $B \neq G$, then there is at least one factorized normal subgroup N of $G=A B$ with $1 \neq N \neq G$ (Theorem 3.1).

The notation is standard; see for instance [8] and [9].

1. The factorizer. The following result of Wielandt [12] is useful for the investigation of factorized groups.

Lemma 1.1. If the group $G=A B$ is the product of two subgroups A and B, then the following conditions of the subgroup S of G are equivalent:
(a) $S=(A \cap S)(B \cap S)$ and $A \cap B \subseteq S$,
(b) If $a b \in S$ with $a \in A$ and $b \in B$, then $a \in S$.

A subgroup S of the factorized group $G=A B$ which satisfies the equivalent conditions of Lemma 1.1 is called factorized.

Since intersections of arbitrary many factorized subgroups of $G=A B$ are factorized subgroups of G, every normal subgroup N of G is contained in a smallest factorized subgroups $X=X(N)$ of G, which we call the factorizer of N in G. By [1], Theorem 1.7, p. 108, the following holds.

Lemma 1.2. If the group $G=A B$ is the product of two subgroups A and B and if N is a normal subgroup of G, then

$$
X=X(N)=A N \cap B N=N(A \cap B N)=N(B \cap A N)=(A \cap B N)(B \cap A N)
$$

This implies the following result.

