FINITE HARMONIC AND GEOMETRIC INTERPOLATION

J.L. SCHIFF AND W.J. WALKER

1. Introduction. In the works [4] and [5], the authors have been developing the theory of finite harmonic interpolation in the unit disk. The basic idea is to express the value of a real-valued harmonic function u in the disk as a finite weighted mean

$$
\begin{equation*}
u(z)=\frac{1}{N} \sum_{k=1}^{N} \frac{R^{2}-|z|^{2}}{\left|\zeta_{k}-z\right|^{2}} u\left(\zeta_{k}\right) \tag{1}
\end{equation*}
$$

for $|z|<R<1, \zeta_{1}, \zeta_{2}, \ldots, \zeta_{N}$ points equally spaced on $|z|=R$, and N a fixed positive integer.

In the present work, we also consider the notion of finite harmonic interpolation on a general domain Ω with an exhaustion $\left\{\Omega_{n}\right\}$ such that the boundary of each $\Omega_{n}, \partial \Omega_{n}$, is an analytic Jordan curve. The Green's function $g_{n}(z, \zeta)$ of Ω_{n} with pole z has an inner normal derivative $\partial g / \partial \eta$ and each Ω_{n} has length L_{n}.

If u is a real-valued harmonic function on Ω and z is in Ω_{n} then

$$
\begin{equation*}
u(z)=\frac{1}{2 \pi} \int_{\partial Q_{n}} u(\zeta) \frac{\partial g_{n}(z, \zeta)}{\partial \eta}|d \zeta|, \tag{2}
\end{equation*}
$$

and $\partial g_{n}(z, \zeta) / \partial \eta$ is continuous on the analytic Jordan curve $\partial \Omega_{n}$. Since $\int_{\partial \Omega_{n}} u(z)|d \zeta|=L_{n} u(z)$ we can rewrite equation (2) to obtain

$$
\begin{equation*}
\left.\int_{\partial \Omega_{n}}\left[u(\zeta) \frac{L_{n}}{2 \pi} \frac{\partial g_{n}(z, \zeta)}{\partial \eta}-u(z)\right]\right]|d \zeta|=0 \tag{3}
\end{equation*}
$$

Let $F(\zeta)=u(\zeta)\left(L_{n} / 2 \pi\right)\left(\partial g_{n}(z, \zeta) / \partial \eta-u(z)\right)$ and parametrize ζ in terms of arc length s, say $\zeta=\psi(s)$. Also let $\partial \Omega_{n}=\bigcup_{k=1}^{N} \gamma_{k}$, where each segment r_{k} has length L_{n} / N, and denote by $F_{k}(s), 0 \leqq s \leqq L_{n} / N$, the restriction of $F(\psi(s))$ to γ_{k}. Then from (3),

$$
\int_{0}^{L_{n} / N}\left[\sum_{k=1}^{N} F_{k}(s)\right] d s=0
$$

By the continuity of F there exists s_{0} such that $\sum_{k=1}^{N} F_{k}\left(s_{0}\right)=0$. That is, there exist N equally spaced points $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{N}$ on $\partial \Omega_{n}$ such that

