FINITE HARMONIC AND GEOMETRIC INTERPOLATION

J.L. SCHIFF AND W.J. WALKER

1. Introduction. In the works [4] and [5], the authors have been developing the theory of finite harmonic interpolation in the unit disk. The basic idea is to express the value of a real-valued harmonic function u in the disk as a finite weighted mean

(1)
$$u(z) = \frac{1}{N} \sum_{k=1}^{N} \frac{R^2 - |z|^2}{|\zeta_k - z|^2} u(\zeta_k),$$

for $|z| < R < 1, \zeta_1, \zeta_2, \ldots, \zeta_N$ points equally spaced on |z| = R, and N a fixed positive integer.

In the present work, we also consider the notion of finite harmonic interpolation on a general domain Ω with an exhaustion $\{\Omega_n\}$ such that the boundary of each Ω_n , $\partial \Omega_n$, is an analytic Jordan curve. The Green's function $g_n(z, \zeta)$ of Ω_n with pole z has an inner normal derivative $\partial g/\partial \eta$ and each Ω_n has length L_n .

If u is a real-valued harmonic function on Ω and z is in Ω_n then

(2)
$$u(z) = \frac{1}{2\pi} \int_{\partial \Omega_n} u(\zeta) \frac{\partial g_n(z,\zeta)}{\partial \eta} |d\zeta|,$$

and $\partial g_n(z, \zeta)/\partial \eta$ is continuous on the analytic Jordan curve $\partial \Omega_n$. Since $\int_{\partial \Omega_n} u(z) |d\zeta| = L_n u(z)$ we can rewrite equation (2) to obtain

(3)
$$\int_{\partial Q_n} \left[u(\zeta) \frac{L_n}{2\pi} \frac{\partial g_n(z, \zeta)}{\partial \eta} - u(z) \right] |d\zeta| = 0.$$

Let $F(\zeta) = u(\zeta) (L_n/2\pi)(\partial g_n(z, \zeta)/\partial \eta - u(z))$ and parametrize ζ in terms of arc length s, say $\zeta = \psi$ (s). Also let $\partial \Omega_n = \bigcup_{k=1}^N \gamma_k$, where each segment γ_k has length L_n/N , and denote by $F_k(s)$, $0 \leq s \leq L_n/N$, the restriction of $F(\psi(s))$ to γ_k . Then from (3),

$$\int_0^{L_n/N} \left[\sum_{k=1}^N F_k(s)\right] ds = 0.$$

By the continuity of F there exists s_0 such that $\sum_{k=1}^{N} F_k(s_0) = 0$. That is, there exist N equally spaced points $\zeta_1, \zeta_2, \ldots, \zeta_N$ on $\partial \Omega_n$ such that

Received by the editors on March 1, 1982.

Copyright © 1983 Rocky Mountain Mathematics Consortium