ON THE S-EQUIVALENCE OF SOME GENERAL SETS OF MATRICES

PATRICK W. KEEF

Abstract

To help classify the set of square matrices over a ring R under the relation of S-equivalence there is defined a module A_{V} together with a pairing on its torsion submodule, which is referred to as the Seifert system of V. It is shown that if R is a field, or R is a PID and det ($t V-V^{\prime}$) has content 1, then the Seifert system characterizes an S-equivalence class. Furthermore, over a field S-equivalence is reducible to the notion of congruence.

1. Introduction. Two square matrices over a ring R are called S-equivalent if one can be derived from the other by a sequence of the following operations (or their inverses);
(1.1) Congruences, i.e., replacing V by $P V P^{\prime}$, with P unimodular over R,
(1.2) Row and column enlargements, i.e., replacing V by,

$$
\text { (i) }\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & a & b \\
0 & c & V
\end{array}\right] \text { or (ii) }\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & a & b \\
0 & c & V
\end{array}\right]
$$

To help classify matrices under this relation, we define a module A_{V} over the ring $R\left[t, t^{-1}\right]$, together with a pairing on its torsion submodule, which will be an invariant of the S-equivalence class of V. We refer to this as the Seifert system for V.

The geometric aspects of the study of S-equivalence have principally been developed in the work of Levine [5, 6, 7]. If $K \subseteq S^{2 n+1}$ is an odd dimensional knot, then any Seifert surface for K determines an integral matrix, called a Seifert matrix. S-equivalence can in this case be interpreted as the matrix theoretic analogue of adding or subtracting handles to these surfaces. S-equivalence actually characterizes the so-called simple embeddings (see Kearton [3]). The module A_{V} then corresponds to the integral homology of the universal abelian cover of $S^{2 n+1}-K$, whose pairing is defined geometrically in Blanchfield [1].

Seifert matrices for knots can algebraically be characterized by the condition $\operatorname{det}\left(V-e V^{\prime}\right)= \pm 1$, where e is either +1 or -1 . These matrices have been classified algebraically by Trotter [10, 11]. The results of

