ON THE S-EQUIVALENCE OF SOME GENERAL SETS OF MATRICES

PATRICK W. KEEF

ABSTRACT. To help classify the set of square matrices over a ring R under the relation of S-equivalence there is defined a module A_V together with a pairing on its torsion submodule, which is referred to as the Seifert system of V. It is shown that if R is a field, or R is a PID and det (tV - V') has content 1, then the Seifert system characterizes an S-equivalence class. Furthermore, over a field S-equivalence is reducible to the notion of congruence.

1. Introduction. Two square matrices over a ring R are called S-equivalent if one can be derived from the other by a sequence of the following operations (or their inverses);

(1.1) Congruences, i.e., replacing V by PVP', with P unimodular over R, (1.2) Row and column enlargements, i.e., replacing V by,

	0٦	0	[0			0٦	1	ך0
(i)	1	а	b	or	(ii)	0	a	b
	0	с	$V \rfloor$			Lo	с	V

To help classify matrices under this relation, we define a module A_V over the ring $R[t, t^{-1}]$, together with a pairing on its torsion submodule, which will be an invariant of the S-equivalence class of V. We refer to this as the Seifert system for V.

The geometric aspects of the study of S-equivalence have principally been developed in the work of Levine [5, 6, 7]. If $K \subseteq S^{2n+1}$ is an odd dimensional knot, then any Seifert surface for K determines an integral matrix, called a Seifert matrix. S-equivalence can in this case be interpreted as the matrix theoretic analogue of adding or subtracting handles to these surfaces. S-equivalence actually characterizes the so-called simple embeddings (see Kearton [3]). The module A_V then corresponds to the integral homology of the universal abelian cover of $S^{2n+1} - K$, whose pairing is defined geometrically in Blanchfield [1].

Seifert matrices for knots can algebraically be characterized by the condition $det(V - eV') = \pm 1$, where e is either +1 or -1. These matrices have been classified algebraically by Trotter [10, 11]. The results of

Received by the editors on Februark 18, 1981.

Copyright © 1983 Rocky Mountain Mathematics Consortium