A DISFOCALITY FUNCTION FOR A NONLINEAR ORDINARY DIFFERENTIAL EQUATION

ALLAN C. PETERSON

Dedicated to Professor Lloyd K. Jackson on the occasion of his sixtieth birthday.

We will be concerned with the differential equation

(1)
$$y^{(n)} = f(x, y, ..., y^{(n-1)})$$

where we will make some or all of the assumptions:

- (A) f is continuous on $J \times \mathbb{R}^n$ (J a subinterval of the reals, R).
- (B) solutions of initial value problems (IVP's) are unique and exist on the whole interval J.
- (C) if $\{y_n\}$ is a sequence of solutions which is uniformly bounded on a nondegenerate compact interval $[c, d] \subset J$, then there exists a subsequence $\{y_{n_k}\}$ such that each of the sequences $\{y_{n_k}^{(i)}\}$, i = 0, ..., n 1, converges uniformly on compact subintervals of J.
- (D) $f_i(x, y, \ldots, y^{(n-1)}) = (\partial/\partial y^i)f(x, y, \ldots, y^{(n-1)}), i = 0, \ldots, n-1$ is continuous on $J \times \mathbb{R}^n$.

For information concerning the compactness condition (C) see [6] and the references given there.

We now introduce much of the same notation used by Muldowney [9]. Let $\tau = (t_1, \ldots, t_n)$. We say that y(x) has *n* zeros at τ provided $y(t_i) = 0, 1 \le i \le n$, and $y(t_i) = y'(t_i) = \cdots = y^{(m-1)}(t_i) = 0$ if a point t_i occurs *m* times in τ . A partition $(\tau_1; \ldots; \tau_r)$ of the ordered *n*-tuple (t_1, \ldots, t_n) is obtained by inserting \prime -1 semicolons in the expression. Let $m_i = |\tau_i|$ be the number of components of τ_i (so $\sum_{i=1}^r m_i = n$). We allow $m_i = 0$ (in which case we might think of τ_i as being a zero tuple or the empty set). We say that $(\tau_1; \ldots; \tau_r)$ is an increasing partition of (t_1, \ldots, t_n) provided $t_1 \le t_2 \le \cdots \le t_n$ and if *t* is a component of τ_i and *s* is a component of τ_j with i < j then either t < s or t = s and $i + m \le j$ where *m* is the multiplicity of *t* in τ_i .

We say that (1) is right $(m_1; \ldots; m_j)$ -disfocal on $J, m_1 + \cdots + m_j = n, 0 \le m_j \le n - j + 1$, provided there do not exist distinct solutions of

Received by the editors on June 25, 1981.

Copyright © 1982 Rocky Mountain Mathematics Consortium