A DISFOCALITY FUNCTION FOR A NONLINEAR ORDINARY DIFFERENTIAL EQUATION

ALLAN C. PETERSON

Dedicated to Professor Lloyd K. Jackson on the occasion of his sixtieth birthday.

We will be concerned with the differential equation

$$
\begin{equation*}
y^{(n)}=f\left(x, y, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

where we will make some or all of the assumptions:
(A) f is continuous on $J \times \mathbf{R}^{n}$ (J a subinterval of the reals, \mathbf{R}).
(B) solutions of initial value problems (IVP's) are unique and exist on the whole interval J.
(C) if $\left\{y_{n}\right\}$ is a sequence of solutions which is uniformly bounded on a nondegenerate compact interval $[c, d] \subset J$, then there exists a subsequence $\left\{y_{n_{k}}\right\}$ such that each of the sequences $\left\{y_{n_{k}}^{(i)}\right\}, i=0, \ldots$, $n-1$, converges uniformly on compact subintervals of J.
(D) $f_{i}\left(x, y, \ldots, y^{(n-1)}\right)=\left(\partial / \partial y^{i}\right) f\left(x, y, \ldots, y^{(n-1)}\right), i=0, \ldots, n-1$ is continuous on $J \times \mathbf{R}^{n}$.
For information concerning the compactness condition (C) see [6] and the references given there.

We now introduce much of the same notation used by Muldowney [9]. Let $\tau=\left(t_{1}, \ldots, t_{n}\right)$. We say that $y(x)$ has n zeros at τ provided $y\left(t_{i}\right)=0,1 \leqq i \leqq n$, and $y\left(t_{i}\right)=y^{\prime}\left(t_{i}\right)=\cdots=y^{(m-1)}\left(t_{i}\right)=0$ if a point t_{i} occurs m times in τ. A partition $\left(\tau_{1} ; \ldots ; \tau_{\ell}\right)$ of the ordered n-tuple (t_{1}, \ldots, t_{n}) is obtained by inserting $/-1$ semicolons in the expression. Let $m_{i}=\left|\tau_{i}\right|$ be the number of components of τ_{i} (so $\sum_{i=1}^{\ell} m_{i}=n$). We allow $m_{i}=0$ (in which case we might think of τ_{i} as being a zero tuple or the empty set). We say that $\left(\tau_{1} ; \ldots ; \tau_{\ell}\right)$ is an increasing partition of (t_{1}, \ldots, t_{n}) provided $t_{1} \leqq t_{2} \leqq \cdots \leqq t_{n}$ and if t is a component of τ_{i} and s is a component of τ_{j} with $i<j$ then either $t<s$ or $t=s$ and $i+m \leqq j$ where m is the multiplicity of t in τ_{i}.

We say that (1) is right $\left(m_{1} ; \ldots ; m_{\ell}\right)$-disfocal on $J, m_{1}+\cdots+m_{l}=$ $n, 0 \leqq m_{j} \leqq n-j+1$, provided there do not exist distinct solutions of

