EXTENSIONS OF ~-HOMOMORPHISMS

ELEANOR R. ARON, ANTHONY W. HAGER¹ AND JAMES J. MADDEN

ABSTRACT. It is shown that, in abelian \prime -groups, each morphism to a complete vector lattice extends over any majorizing embedding. This extends a result of the first author for Archimedean *f*-algebras with identity, and the recent Luxemburg-Schep theorem for vector lattices, and solves a problem of Conrad and McAlister. The proof presented here differs substantially from the Luxemburg-Schep proof. Ours uses the Yosida representation and Gleason's theorem on topological projectivity—this is novel, and seems relatively economical and transparent. The \prime -group theorem is shown to imply, and with some modestly categorical machinery, to be implied by, certain similar statements in subcategories of \prime -groups.

1. Introduction. Recall that, in a category \mathscr{C} , an object V is called injective if given the morphisms $\psi: G \to V$ and $\mu: G \to H$, with μ monic, there is a morphism $\varepsilon: H \to V$ with $\varepsilon \circ \mu = \psi$. We consider the category of Archimedean \checkmark -groups (i.e., lattice-ordered groups), with morphisms the \checkmark -homomorphisms, (i.e., group homomorphisms preserving finite meets and joins). Here, there are no injectives [4], but the theorem of the abstract, stated precisely below, shows that the complete vector lattices behave like injectives with respect to a restricted class of monics.

THEOREM 1.1 Let $\psi: G \to V$ and $\mu: G \to H$ be morphisms of Abelian *'*-groups. Then, there is a morphism $\varepsilon: H \to V$ with $\varepsilon \circ \mu = \psi$ provided that

- (a) V is a complete vector lattice, and
- (b) μ is a majorizing embedding.

Here, complete means Dedekind complete; embedding is another word for monic or one-to-one; the subset S of the ℓ -group H is said to majorize H if given $h \in H$ there is $s \in S$ with $|h| \leq s$; and the morphism $\mu: G \to H$ is called majorizing if $\mu(G)$ majorizes H.

¹This author is indebted to Dompier's HRS and Wesleyan University for support during a sabbatical of Spring 1980.

AMS [MOS] subject classifications [1980]: 06F20, 54H10.

Received by the editors on September 8, 1980, and in revised form on December 9, 1980.