A SINGULAR NONLINEAR BOUNDARY VALUE PROBLEM

J.C. KURTZ

We consider the singular non-linear boundary value problem

$$
\begin{equation*}
\ddot{y}+\frac{\gamma}{t} \dot{y}-y+f\left(y^{2}\right) y=0, \quad t \in(0, \infty) \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow 0+} y(t)>0, \lim _{t \rightarrow \infty} y(t)=0, \lim _{t \rightarrow 0+} \dot{y}(t)=0, \tag{1.2}
\end{equation*}
$$

where $1 \leqq \gamma \leqq 2$. It is shown that for certain functions f, positive in $(0, \infty)$ and continuous in $[0, \infty)$, the equation (1.1) has solutions $y_{n}(t)$, $n=0,1,2, \ldots$, which satisfy (1.2) and vanish at n distinct points in ($0, \infty$).

The problem is motivated by a model for stationary self-focusing of light beams given by Zakharov, Sobolev, and Synakh [12]; and others. After some simplification, their equation becomes

$$
\begin{equation*}
\ddot{y}+\frac{1}{t} \dot{y}-y+f\left(y^{2}\right) y=0 \tag{1.3}
\end{equation*}
$$

Of particular interest is the case $f(s)=s$, in which case (1.3) becomes

$$
\begin{equation*}
\ddot{y}+\frac{1}{t} \dot{y}-y+y^{3}=0 . \tag{1.4}
\end{equation*}
$$

Ryder [11] and Macki [6] have considered the equation

$$
\ddot{x}-x+x F\left(x^{2}, t\right)=0
$$

which under the substitutions

$$
F\left(x^{2}, t\right)=f\left(x^{2} / t^{2}\right), y(t)=t^{-1} x(t)
$$

becomes our equation (1.1) with $\gamma=2$. The range $1 \leqq \gamma<2$ is not included, and our condition (III) on the nonlinearity is different from theirs, so that neither result is contained in the other even for $\gamma=2$. Nehari [10] has considered the equation

$$
\begin{equation*}
\ddot{y}+\frac{2}{t} \dot{y}-y+y^{3}=0 \tag{1.5}
\end{equation*}
$$

which is also included in (1.1) for $\gamma=2$. The thrust of this paper is to

