THE C*-ALGEBRA OF THE ELLIPTIC BOUNDARY PROBLEM

P. COLELLA AND H.O.CORDES

0. Introduction. Let $\mathbf{R}_{+}^{n+1} = \{x = (x_0, ..., x_n): x_0 > 0\}$, and $\partial \mathbf{R}_{+}^{n+1} = \{x_0 = 0\}$. Consider unbounded differential operators L of $\mathfrak{H} = L^2(\mathbf{R}_{+}^{n+1})$ given by an expression $(a) = \sum_{|\alpha| \le N_j} a_\alpha D^\alpha$ over \mathbf{R}_{+}^{n+1} and a set (b) of boundary expressions $(b_j) = \sum_{|\alpha| \le N_j} b_{j,\alpha} D^\alpha$, $N_j < N, j = 1, ..., m$. L is defined by (a), in dom $L = \{u \in \mathfrak{H}_N: (b)u = 0\}$, with the L^2 -Sobolev space $\mathfrak{H}_N = \mathfrak{H}_N (\mathbf{R}_{+}^{n+1})$. General assumptions: $a_\alpha^{(\beta)} \varepsilon CS(\mathcal{R}_{+}^{n+1}) \quad b_{j,\alpha}^{(\beta)} \in CS(\partial \mathbf{R}_{+}^{n+1})$, with the two C^* -function algebras over \mathbf{R}_{+}^{n+1} and its boundary generated by $\lambda(x) = (1 + x^2)^{-1/2}$ and $s_j(x) = x_j\lambda(x)$, j = 0, ..., n, respectively.

Examples are the operators Δ_d and Δ_n , formed with the Laplace operator $(a) = \Delta$, and the Dirichlet and Neumann condition, (b) = 1, and $(b) = \partial/\partial x_0$, respectively. Δ_d and Δ_n are known to be negative self-adjoint operators of \mathfrak{H} , so that all operators of (0.1), below, are well defined bounded operators of \mathfrak{H} .

(0.1)
$$A_d = (1 - \Delta_d)^{-1/2}, \ A_n = (1 - \Delta_n)^{-1/2}, \ S_d = D_0 A_d, \\ S_n = D_0 A_n, \ S_{i,d} = D_i A_d, \ S_{n,i} = D_i A_n, \ j = 1, \dots, n.$$

The C*-algebras generated by (taking operator norm closure in $\mathfrak{Q}(\mathfrak{H})$ of the finitely generated algebra of the operators) (0.1), (or (0.1) together with the multiplication operators $a(M): \mathfrak{H} \to \mathfrak{H}$, defined by (a(M)u)(x) = $a(x)u(x), x \in \mathbb{R}^{n+1}_+$, for $a \in CS(\mathbb{R}^{n+1}_+)$) will be denoted by \mathfrak{A}^{\sharp} and \mathfrak{A} , respectively. We shall refer to \mathfrak{A} as of the C*-algebra of the elliptic boundary problem in the half space \mathbb{R}^{n+1}_+ . We believe this distinctive notation justified, because the algebra \mathfrak{A} proves to be of interest for a variety of reasons, listed below. First, c.f. [10], \mathfrak{A} contains (Fredholm) inverses L^{-1} of L generated by a general (Lopatinski—Shapiro type) variable coefficient boundary condition (b) and a suitable elliptic constant coefficient (a). Moreover we then even have $P_{L,\alpha} = D^{\alpha}L^{-1} \in \mathfrak{A}$, for all $|\alpha| \leq N =$ order of L. Second, we shall make available good criteria for $A \in \mathfrak{A}$ to be Fredhom. Third, \mathfrak{A} may be of interest as a type-1 C*-algebra with a finite ideal chain

$$(0.2) \mathfrak{A} \supset \mathfrak{G} \supset \mathfrak{G},$$

where \mathfrak{G} and \mathfrak{G} denote the commutator ideal of \mathfrak{A} and the compact ideal of \mathfrak{H} , respectively. In fact we get

Copyright © 1980 Rocky Mountain Mathematics Consortium

Received by the editors on April 13, 1978.