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EMBEDDING NONCOMPACT MANIFOLDS 
J. W. MAXWELL1 

0. Introduction. Let X and Y denote PL spaces; that is, locally com­
pact, separable, metric spaces each of which possesses a piecewise lin­
ear structure. The map / : X —• Y is fc-connected provided ^(f) = 
TT^Mp X) = 0 for i ^ k where Mf denotes the mapping cylinder of / . In 
[6] Hudson proves that if / is a map between a compact PL manifold 
Mm and a PL manifold Q9, f\ dM is an embedding of dM into dQ and 
q — m ^ 3, then / is homotopic rei dM to a PL embedding provided 
*.(/) = 0 for i ^ 2ra - q + 1 and ir^Q) = 0 for i ^ 3m - 2q + 3. 
Theorem 4.2 extends this theorem to the case where M is noncompact 
with appropriate additional assumptions. The assumption that Q be 
3m — 2g + 3 connected in Hudson's Theorem was later shown to be 
unnecessary (see [5, Ch. 12]) using surgery techniques. The techniques 
of this paper, which are an extension of those of [6] and [12] require 
this connectivity. Using PL approximation techniques Berkowitz and 
Dancis [1] were able to prove a theorem similar to Theorem 4.2 in the 
3/4 range which does not require connectivity of Ç. 

The term space shall always mean a locally compact, separable, met­
ric space. A polyhedron is a compact PL space. A PL m-manifold is a 
PL space locally homeomorphic with euclidean m-space. A map / be­
tween spaces X and Y is proper provided f~\C) is compact for each 
compact subset C of Y. All maps and homotopies are assumed to be 
proper unless stated otherwise. The symbol " ~ " is read "is homotopic 
to". The symbol A denotes the halfline [0, oo) and a subspace of a PL 
space X which is homemorphic to A is called a ray in X. All deforma­
tion retractions are assumed to be strong deformation retractions in the 
sense of [8]. The symbol 9 denotes boundary and the abbreviation int 
denotes interior. 

Sections 1, 2, and 3 should provide a self-contained treatment of in­
finite engulfing and its relation to connectivity at infinity (cf., Lemma 
2.1 of [1]). 

1. Proper Collapsing. 

DEFINITION 1.1. There is an elementary collapse from the polyhedron 
P to the polyhedron Q, denoted P \ eQ, provided P — Q \J D where D 
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