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SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS 
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ABSTRACT. We consider systems of the form ut + 2 ^ A-ux — 0, 
where the A/s are constant k X k (hermitian) symmetric matrices, 
and u is a column vector of k components. We use Fourier trans
form to prove that non-static solutions decay in time at every point 
x. As a consequence, it follows that the energy of any such solution 
decays locally. More generally, we show that if B(t) is a set which 
does not increase "too" fast, the energy in B(t) of any non-static so
lution also decays. 

1. Introduction. We consider systems of the form 

where the A/s are constant k X k (hermitian) symmetric matrices, and 
ti is a column vector of k components. These are functions of the inde
pendent variables t E R and x — (xv • • -, xn) E Rn. Systems of this 
type are the general form of a large number of equations of mathemati
cal physics, such as Maxwell's equation, the equations of transmission 
lines, acoustics, elasticity (see Appendix in [7]), and even the equations 
of magnetogasdynamics (see [1]). 

It is customary to discuss the above systems under additional assump
tions on the matrices A-. One such assumption is that the roots X = 
X(p) of the characteristic equation 

(2) P(\p) = det (xi - 2 P A ) = 0 

are all different from zero for p ¥= 0, that is, the operator 2] l_1 Afi/dXj 
is elliptic ([4], p. 178); or a fixed number of them never vanish for p ¥= 
0 ([3]); or the assumption contained in the definition of uniformity 
propagative systems of Wilcox ([7]). In our treatment we impose no re
strictions on the A-'s other than those stated in the previous paragraph. 
This is important because there are systems, such as those of magneto
gasdynamics, which possess roots X(p) that vanish for certain p ¥= 0, but 
not identically. It has been shown that if a characteristic root X(p) is 
not identically zero then the set of those p where X(p) = 0 is of mea
sure zero ([1]). Since the X(p), for \p\ = 1, are speeds of propagation of 
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